PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum mechanical aspects in the MEMS/NEMS technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to the scaling laws for nanomechanical resonators, many of their metrological properties improve when downscaled. This fact encourages for constant miniaturization of MEMS/NEMS based sensors. It is a well known fact, that the laws of classical physics cannot be used to describe the systems which are arbitrarily small. In consequence, the classical description of nanoresonators must break down for sufficiently small and cool systems and then the quantum effects cannot be neglected. One of the fundamental question which arises is, how one may investigate quantum effects in MEMS/NEMS sensors and what is the influence of quantum effects on the performance of such systems. In this paper we would like to raise those issues by presenting the results of our work related to our estimations and calculations of MEMS/NEMS dynamics. The first and second sections are of theoretical character. In the first section (Classical modeling), we describe the classical methods for describing the resonator dynamics and the classical limit on the resolution of MEMS/NEMS based force sensors, which is set by the thermomechanical noise. In the second section (Quantum aspects), we concentrate on the quantum description of micro and nanoresonators and the influence of quantum effects, such as zero-point motion and back-action, on their performance (quantum limits). The third section is devoted to the presentation of our experimental methods of MEMS/NEMS deflection metrology, i.e. Optical Beam Deflection method (OBD) and fibre optics interferometry.
Słowa kluczowe
EN
MEMS   NEMS   OBD   FOI   quantum   force   resolution  
Wydawca
Rocznik
Strony
87--91
Opis fizyczny
Bibliogr. 23 poz., rys., wzory
Twórcy
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, 11/17 Z. Janiszewskiego St., PL-50372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, 11/17 Z. Janiszewskiego St., Pl-50372 Wrocław, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, 11/17 Z. Janiszewskiego St., Pl-50372 Wrocław, Poland
autor
  • Institute of Electron Technology, 32/46 Lotników Ave., PL-02668 Warszawa, Poland
autor
  • Institute of Electron Technology, 32/46 Lotników Ave., PL-02668 Warszawa, Poland
autor
  • Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, 11/17 Z. Janiszewskiego St. ,Pl-50372 Wrocław, Poland
Bibliografia
  • [1] Poot M., van der Zant H. S.: Mechanical systems in the quantum regime. Physics Reports, 2012, 511(5), 273-335.
  • [2] Cleland A. N., Roukes M. L.: Noise processes in nanomechanical resonators. Journal of Applied Physics, 2002, 92(5), 2758-2769.
  • [3] Bhushan B., Kawata S.: Applied scanning probe methods VI. 2007, Springer-Verlag Berlin Heidelberg.
  • [4] Duraffourg L., Arcamone J.: Nanoelectromechanical Systems, 2015. John Wiley & Sons, Inc.
  • [5] Schwab K. C., Roukes M. L.: Putting mechanics into quantum mechanics. Physics Today, 2005, 58(7), 36-42.
  • [6] Montinaro M.: Coupling of nanomechanical resonators to controllable quantum systems (Doctoral dissertation, University_of_Basel), 2014.
  • [7] Teufel J. D., Donner T., Castellanos-Beltran M. A., Harlow J. W., Lehnert, K. W.: Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature nanotechnology, 2009, 4(12), 820-823.
  • [8] Gao W.: Precision nanometrology and its applications to precision nanosystems. International Journal of Precision Engineering and Manufacturing, 2005, 6(4), 14-20.
  • [9] Basarir O., Bramhavar S., Basilio-Sanchez G., Morse T., Ekinci K. L.: Sensitive micromechanical displacement detection by scattering evanescent optical waves. Optics letters, 2010, 35(11), 1792-1794.
  • [10] Lee J. H., Yoon K. H., Kim T. S.: Characterization of resonant behavior and sensitivity using micromachined PZT cantilever. Integrated Ferroelectrics, 2002, 50(1), 43-52.
  • [11] Shekhawat G., Tark S. H., Dravid V. P.: MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science, 2006, 311(5767), 1592-1595.
  • [12] Binnig G., Quate C. F., Gerber C.: Atomic force microscope. Physical review letters, 1986, 56(9), 930.
  • [13] Hoogenboom B. W., Frederix P. L. T., Yang J. L., Martin S., Pellmont Y., Steinacher M., Hug H. J.: A Fabry–Perot interferometer for micrometer-sized cantilevers. Applied Physics Letters, 2005, 86(7), 074101-1.
  • [14] Helm M., Servant J. J., Saurenbach F., Berger R.: Read-out of micromechanical cantilever sensors by phase shifting interferometry. Applied Physics Letters, 2005, 87(6).
  • [15] Boisen A., Dohn S., Keller S. S., Schmid S., Tenje M.: Cantilever-like micromechanical sensors. Reports on Progress in Physics, 2011, 74(3), 036101.
  • [16] Kopiec D., Pałetko P., Nieradka K., Majstrzyk W., Kunicki P., Sierakowski A., Gotszalk, T.: Closed-loop surface stress compensation with an electromagnetically actuated micro-cantilever. Sensors and Actuators B: Chemical, 2015, 213, 566-573.
  • [17] Meyer G., Amer N. M.: Novel optical approach to atomic force microscopy. Applied physics letters, 1988, 53(12), 1045-1047.
  • [18] Bosseboeuf A., Petitgrand S.: Application of microscopic interferometry techniques in the MEMS field. In Optical Metrology (pp. 1-16). Int. Society for Optics and Photonics, 2003, October.
  • [19] Rasool H. I., Wilkinson P. R., Stieg A. Z., Gimzewski J. K.: A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy imaging in liquids. Review of Scientific Instruments, 2010, 81(2), 023703.
  • [20] Lawall J., Kessler E.: Michelson interferometry with 10 pm accuracy. Review of Scientific Instruments, 2000, 71(7), 2669-2676.
  • [21] Li Y., Mi X., Sasaki M., Hane K.: Precision optical displacement sensor based on ultra-thin film photodiode type optical interferometers. Measur. Science and Technology, 2003, 14(4), 479.
  • [22] Li M., Wang M., Li H.: Optical MEMS pressure sensor based on Fabry-Perot interferometry. Optics Express, 2006, 14(4), 1497-1504.
  • [23] Smith D. T., Pratt J. R., Howard L. P.: A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement. Review of Scientific Instruments, 2009, 80(3), 035105.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb9fa4e2-bbc7-472a-8219-f635b263e1c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.