PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Excavation‑induced structural deterioration of rock masses at different depths

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The excavation-induced deterioration of rock mass quality and integrity may significantly affect the stability of deep underground spaces. However, the influence of the burial depth on excavation-induced rock mass structural deterioration remains unclear. To address this issue, in the Jinping II auxiliary tunnels, borehole acoustic wave and digital panoramic borehole imaging tests were conducted at five depths, and the surrounding rock mass structure deterioration was comprehensively quantified at these depths. The results show that the wave curve significantly varies with increasing depth, and the deeper the tunnel section is, the more severe the rock damage is, the larger the excavation damage zone is, and the more complex the generated fracture network is. An excavation-damaged zone and excavation-disturbed zone (EdZ) were found in the rock masses at shallow depths, while a highly damaged zone (HDZ) and EdZ were observed at greater depths. Further investigation demonstrates that the formation pattern of excavation-damaged zones (EDZs) at deep depths follows a stress-concentration controlled mode, and at very shallow depths, horizontal unloading plays a dominant role in the EDZ formation process (yielding a pure unloading-controlled mode), while at intermediate depths, a mixed EDZ formation mode is observed.
Rocznik
Strony
art. no. e81, 1--15
Opis fizyczny
Bibliogr. 42 poz., il., tab., wykr.
Twórcy
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • School of Architecture and Environment, Sichuan University, Chengdu, China
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • College of Hydraulic and Hydropower Engineering, Sichuan University, Chengdu, China
autor
  • School of Architecture and Environment, Sichuan University, Chengdu, China
Bibliografia
  • 1. Song Z, Zhang J. Research on the progressive failure process and fracture mechanism of rocks with the structural evolution perspective. J Struct Geol. 2022;154:104484.
  • 2. Gao FQ, Kang HP. Effects of pre-existing discontinuities on the residual strength of rock mass – Insight from a discrete element method simulation. J Struct Geol. 2016;85:40-50.
  • 3. Zhang Y, Liu X, Liu X, Wang S, Ren F. Numerical characterization for rock mass integrating GSI/Hoek-Brown system and synthetic rock mass method. J Struct Geol. 2019;126:318-329.
  • 4. Kwon S, Cho W. The influence of an excavation damaged zone on the thermal-mechanical and hydro-mechanical behaviors of an underground excavation. Eng Geol. 2008;101:110-123.
  • 5. Kim H-M, Rutqvist J, Jeong J-H, Choi B-H, Ryu D-W, Song W-K. Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage. Rock Mech Rock Eng. 2013;46:1113-24.
  • 6. Ma D, Rezania M, Yu H-S, Bai H-B. Variations of hydraulic properties of granular sandstones during water inrush: effect of small particle migration. Eng Geol. 2017;217:61-70.
  • 7. Hebblewhite B. Fracturing, caving propagation and influence of mining on groundwater above longwall panels - a review of predictive models. Int J Min Sci Technol. 2020;30:49-54.
  • 8. Siren T, Kantia P, Rinne M. Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock. Int J Rock Mech Min Sci. 2015;73:165-174.
  • 9. Pardoen B, Talandier J, Collin F. Permeability evolution and water transfer in the excavation damaged zone of a ventilated gallery. Int J Rock Mech Min Sci. 2016;85:192-208.
  • 10. Kim H-M, Lettry Y, Park D, Ryu D-W, Choi B-H, Song W-K. Field evaluation of permeability of concrete linings and rock masses around underground lined rock caverns by a novel in situ measurement system. Eng Geol. 2012;137:97-106.
  • 11. Yang J, Dai J, Yao C, Jiang S, Zhou C, Jiang Q. Estimation of rock mass properties in excavation damage zones of rock slopes based on the Hoek-Brown criterion and acoustic testing. Int J Rock Mech Min Sci. 2020;126:104192.
  • 12. Cai M, Kaiser P, Martin C. Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int J Rock Mech Min Sci. 2001;38:1135-45.
  • 13. Malmgren L, Saiang D, Toyra J, Bodare A. The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden-by seismic measurements. J Appl Geophys. 2007;61:1-15.
  • 14. Vlachopoulos N, Carrapatoso C, Vazaios I, Forbes B. Integration among LiDAR-based structural input, DFN generation and DOS technology to describe the rock mass fracture system. In: Paper presented at the ISRM Int Symp - EUROCK 2020 (2020).
  • 15. Jia Z, Xie H, Zhang R, Li C, Wang M, Gao M, et al. Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression. Rock Mech Rock Engng. 2020;53:2063-76.
  • 16. Kelsall P, Case J, Chabannes C. Evaluation of excavation-induced changes in rock permeability. Int J Rock Mech Min Sci Geomech Abstracts: Elsevier; 1984. p. 123-135.
  • 17. Sato T, Kikuchi T, Sugihara K. In situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan. Developments in Geotechnical Engineering: Elsevier; 2000. p. 105-116.
  • 18. Sagong M, Park CS, Lee B, Chun B-S. Cross-hole seismic technique for assessing in situ rock mass conditions around a tunnel. Int J Rock Mech Min Sci. 2012;53:86-93.
  • 19. Liu N, Zhang C, Chu W. Detection and analysis of excavation damage zone of deep tunnel. Rock Soil Mech. 2011;32:526-531.
  • 20. Li S, Feng X, Li Z, Chen B, Jiang Q, Wu S, et al. In situ experiments on width and evolution characteristics of excavation damaged zone in deeply buried tunnels. Sci China Technol Sci. 2011;54:167-174.
  • 21. Gao M, Zhang R, Xie J, Peng G, Yu B, Ranjith P. Field experiments on fracture evolution and correlations between connectivity and abutment pressure under top coal caving conditions. Int J Rock Mech Min Sci. 2018;111:84-93.
  • 22. Wu F, Liu J, Liu T, Zhuang H, Yan C. A method for assessment of excavation damaged zone (EDZ) of a rock mass and its application to a dam foundation case. Eng Geol. 2009;104:254-262.
  • 23. Wu S, Shen M, Wang J. Jinping hydropower project: main technical issues on engineering geology and rock mechanics. Bull Eng Geol Env. 2010;69:325-332.
  • 24. Li S, Feng X-T, Li Z, Chen B, Zhang C, Zhou H. In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station. Eng Geol. 2012;137:85-96.
  • 25. Wu S, Wang G. Challenge issues in construction and project of large-scale deep-buried tunnel group of Jinping II hydropower station. Chin J Rock Mech Eng Geol. 2010;29:2161-71.
  • 26. Bae D-s, Kim K-s, Koh Y-k, Kim J-y. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer. Rock Mech Rock Eng. 2011;44:497-504.
  • 27. Wang C, Ge X, Bai S. Study of the digital panoramic borehole camera system. Chin J Rock Mech Eng Geol. 2002;21:398-403.
  • 28. Wang C, Wang Y, Zou X, Han Z, Zhong S. Study of a borehole panoramic stereopair imaging system. Int J Rock Mech Min Sci. 2018;104:174-181.
  • 29. Wang H, Jiang Y, Xue S, Shen B, Wang C, Lv J, et al. Assessment of excavation damaged zone around roadways under dynamic pressure induced by an active mining process. Int J Rock Mech Min Sci. 2015;77:265-277.
  • 30. Li H-b, Liu M-c, Xing W-b, Shao S, Zhou J-w. Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Engng. 2017;50:1883-1900.
  • 31. Xu N, Dai F, Li B, Zhu Y, Zhao T, Yang D. Comprehensive evaluation of excavation-damaged zones in the deep underground caverns of the Houziyan hydropower station, Southwest China. Bull Eng Geol Env. 2017;76:275-293.
  • 32. Ma K, Zhang J, Zhou Z, Xu N. Comprehensive analysis of the surrounding rock mass stability in the underground caverns of Jinping I hydropower station in Southwest China. Tunnelling Underground Space Technol. 2020;104:103525.
  • 33. Shen X, Chen M, Lu W, Li L. Using P wave modulus to estimate the mechanical parameters of rock mass. Bull Eng Geol Env. 2017;76:1461-1470.
  • 34. Liu Q, Liu J, Pan Y, Kong X, Hong K. A case study of TBM performance prediction using a Chinese rock mass classification system - Hydropower Classification (HC) method. Tunn Undergr Space Technol. 2017;65:140-154.
  • 35. Lahiri S. Estimating effective permeability using connectivity and branch length distribution of fracture network. J Struct Geol. 2021;146:104314.
  • 36. Deere DU. Technical description of rock cores for engineering purpose. Rock Mech Eng Geol. 1964;1:17-22.
  • 37. Ai T, Zhang R, Zhou H, Pei J. Box-counting methods to directly estimate the fractal 5
  • 38. Toth M, Fracture T. network characterization using 1D and 2D data of the Moragy Granite body, southern Hungary. J Struct Geol. 2018;113:176-187.
  • 39. Chen Y-p, Wang S-j, Wang E-z. Strength and elastic properties of sandstone under different testing conditions. J Cent South Univ Technol. 2007;14:210-215.
  • 40. Chen X, Li L. Inverse analysis of initial field stress for Jinping II hydropower station tunnel area. Hydrol Geol Eng Geol. 2007:55-58+75.
  • 41. Zhang R, Ai T, Li H, Zhang Z, Liu J. 3D reconstruction method and connectivity rules of fracture networks generated under different mining layouts. Int J Min Sci Technol. 2013;23:863-871.
  • 42. Zhang R, Ai T, Zhou HW, Ju Y, Zhang ZT. Fractal and volume characteristics of 3D mining-induced fractures under typical mining layouts. Environ Earth Sci. 2015;73:6069-80.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb9d87db-ed48-4698-87d9-b96c4745b75c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.