Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Warsaw Medical Physics Meeting 2014 (2014 ; 15-17 May ; Warsaw, Poland)
Języki publikacji
Abstrakty
The area of interests of nuclear physics are studies of reactions, wherein atomic nuclei of projectile collide with target nuclei. An amount of energy lost by projectile nucleus during its passing through the target is a major issue – it is important to know how charged particles interact with matter. It is possible to afford this knowledge by using theoretical programs that calculate energy loss applying the Bethe-Bloch equation. Hadrontherapy, which is a field of still growing interest, is based on the interactions of charged particles with matter. Therefore, there exists a need of creating a simple model that could be used to the calculation of dose distributions in biological matter. Two programs (SRIM, Xeloss), used to the calculation of energy loss by nuclear physicist, have been adapted to determine the dose distributions in analogues of human tissues. Results of the calculations with those programs for beams used in hadrontherapy (e.g. 1H, 12C) will be compared with experimental data available in references.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
19--22
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
- Faculty of Physics, University of Warsaw, 5 Pasteura Str., 02-093 Warsaw, Poland
autor
- Faculty of Physics, University of Warsaw, 5 Pasteura Str., 02-093 Warsaw, Poland
autor
- Faculty of Physics, University of Warsaw, 5 Pasteura Str., 02-093 Warsaw, Poland
Bibliografia
- 1. Particle Therapy Co-Operative Group. (2014). Patient statistics per end of 2013. Retrieved August 15, 2014, from http://www.ptcog.ch/archive/patient/_statistics/.
- 2. Durante, M., & Loeffler, J. (2010). Charged particles in radiation oncology. Nat. Rev. Clin. Oncol., 7(1), 37–43. DOI: 10.1038/nrclinonc.2009.183.
- 3. Schulz-Ertner, D., Jäkel, O., & Schlegel, W. (2006). Radiation therapy with charged particles. Semin. Radiat. Oncol., 16(4), 249–259. DOI: 10.1016/j. semradonc.2006.04.008.
- 4. Ziegler, J. (2013). SRIM [computer software].
- 5. Bloch, F. (1933). Bremsvermögen von Atomen mit mehreren elektronen. Z. Phys. A: Hadrons Nucl., 81(5/6), 363–376. DOI: 10.1007/BF01344553.
- 6. Bloch, F. (1933). Zur bremsung rash bewegter teilchen beim durchgang durh materie. Ann. Phys., 408(3), 285–320. DOI: 10.1002/andp.19334080303.
- 7. Kurz, C., Mairani, A., & Parodi, K. (2012). First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center. Phys. Med. Biol., 57(15), 5017–5034. DOI: 10.1088/0031-9155/57/15/5017.
- 8. Soltani-Nabipour, J., Sardari, D., & Cata-Danil, G. H. (2009). Sensitivity of the Bragg peak curve to the average ionization potential of the stopping medium. Rom. J. Phys., 54(3/4), 321–330.
- 9. Rietzel, E., Schardt, D., & Haberer, T. (2007). Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples. Radiat. Oncol., 2, 14(9 pp.). DOI: 10.1186/1748–717X-2-14.
- 10. Woodard, H., & White, D. (1986). The composition of body tissue. Br. J. Radiol., 59(708), 1209–1219.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb97dcd0-782d-4239-8491-4d6db658c4c1