Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Poly ethylene oxide is an uncrosslinked, non-ionic linear hydrophilic polymer with a variety of molecular weights. PEO is used to make it, and it offers a number of beneficial qualities for medication delivery and antibacterial uses. The antibacterial activity of polyethylene oxide (PEO) at various concentrations as (80, 40, 20, 10 g/ml) against bacteria in Gram-positive Staphylococcus aureus, Streptococcus pyogenes and Lactobacillus sp. and Gram-negative Enterobacter bugandensis, E. coli, Pseudomonas aeruginosa and Klebsiella pneumonia was investigated in this study. The disk diffusion experiment was used to assess the antimicrobial activity of PEO, as well as each isolate’s minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). PEO is shown to have strong broad-spectrum antibacterial action against the bacteria studied, that inhibition zone increase their width inversely proportional to PEO concentration, and has even outpaced the efficacy of certain medicines. PEO had MICs ranging from 10 to 20 g/ml, as well as MBCs of 20 to 80 g/ml. In additional studies, PEO was discovered to be strongly associated with the cell of bacteria, which contributed to its inhibitory impact on bacterial invasion and growth. PEO at an appropriate dose effectively decreased bacterial growth. PEO is highly recommended as a cost-effective antibacterial treatment, Specifically, ectopic infection treatment without the risk of bacterial strains becoming antibiotic-resistant.
Wydawca
Rocznik
Tom
Strony
26--31
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- College of Science, AL-Qadisiyah University, Al Diwaniyah, Qadisiyyah Province, Iraq
autor
- Department of Biology, College of Science, University of Babylon, Babylon, Iraq
autor
- DNA Research Center, Babylon University, Babylon, Iraq
autor
- Collage of Water Resource Engineering, AL-Qasim Green University, Babylon, 51031, Iraq
Bibliografia
- 1. Bates, C.M., Chang, A.B., Momcˆilovic ́, N., Jones, S.C., Grubbs, R.H. 2015. ABA Triblock Brush Polymers: Synthesis, Self-Assembly, Conductivity, and Rheological Properties. Macromolecules, 48, 4967–4973.
- 2. Clinical and Laboratory Standards Institute, CLSI. 2006.
- 3. Clinical and Laboratory Standards Institute. 2012. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational, Supplement. CLSI Document M02-A10 and M07-A8. Texas: Clinical and Laboratory Standards Institute.
- 4. Clinical and Laboratory Standards Institute. 2012. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational, Supplement. CLSI Document M02-A10 and M07-A8. Texas: Clinical and Laboratory Standards Institute.
- 5. CLSI. 2016. Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI Supplement M100S. Wayne, PA: Clinical and Laboratory Standards Institute.
- 6. Gabriel, G.J., Som, A., Madkour, A.E., Eren, T., Tew, G.N. 2007. Infectious disease: Connecting innate immunity to biocidal polymers. Mater. Sci. Eng. R. Rep., 57, 28–64.
- 7. Gao, A.X., Liao, L., Johnson, J.A. 2014. Synthesis of acid-labile PEG and PEG-doxorubicin-conjugate nanoparticles via Brush-First ROMP. ACS Macro. Lett. 2014, 3, 854–857.
- 8. Gasteier, P., Reska, A., Shult, P., Salber, J., Offenhäusse, A., Moeller, M., Groll, J. 2007. Surface grafting of PEO-based star-shaped molecules foe bioanalytical and biomedical applications. Macromol. Biosci., 7, 1010–1023.
- 9. Gueugnon, F., Denis, I., Pouliquen, D., Collette, F., Delatouche, R., Héroguez, V., Grégoire, M., Bertrand, P., Blanquart, C. 2013. Nanoparticles Produced by Ring-Opening Metathesis Polymerization Using Norbornenyl-poly(ethylene oxide) as a Ligand-Free Generic Platform for Highly Selective In Vivo Tumor Targeting. Biomacromolecules. 2013, 14, 2396–2402.
- 10.Johnson, J.A., Lu, Y.Y., Burts, A.O., Xia, Y., Durrell, A.C., Tirrell, D.A., Grubbs, R.H. 2010. Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 2010, 43, 10326–10335.
- 11. Kim, S.C., Lee, D.K. 2005. Preparation of TiO2-coated hollowglass beads and their application to the control of algalgrowth in eutrophic water. Microchem J., 80, 227-232.
- 12. Kugel, A., Stafslien, S., Chisholm, B.J. 2011. Antimicrobial coatings produced by “tethering” biocides to the coating matrix: A comprehensive review. Prog. Org. Coat., 72, 222–252.
- 13. Laverty, A.L., Primpke, S., Lorenz, C., Gerdts, G., Dobbs, F.C. 2020. Bacterial biofilms colonizing plastics in estuarine waters, with an emphasis on Vibrio spp. and their antibacterial resistance. PLoS ONE 15, e0237704.
- 14. Liao, L., Liu, J., Dreaden, E.C., Morton, S.W., Shopsowitz, K.E., Hammond, P.T., Johnson, J.A. 2014. A convergent synthetic platform for singlenanoparticle combination cancer therapy: Ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J. Am. Chem. Soc., 136, 5896–5899.
- 15. Liu, J., Burts, A.O., Li, Y., Zhukhovitskiy, A.V., Ottaviani, M.F., Turro, N.J., Johnson, J.A. 2012. ‘Brushfirst’ method for the parallel synthesis of photocleavable, nitroxide-labeled poly(ethylene glycol) star polymers. J. Am. Chem. Soc., 134, 16337–16344.
- 16. Neugebauer, D. 2007. Graft copolymers with poly(ethylene oxide) segments. Polym. Int. 2007, 56, 1469–1498.
- 17. Pemmada, R., Zhu, X., Dash, M., Zhou, Y., Ramakrishna, S., Peng, X. 2020. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials, 13, 4041.
- 18. Quémener, D., Chemtob, A., Héroguez, V., Gnanou, Y. 2005. Synthesis of latex particles by ringopening metathesis polymerization. Polymer, 46, 1067–1075.
- 19. Radder, A.M., Leenders, H., van Blitterswijk, C.A. 1996. Application of porous PEO/PBT copolymers for bone replacement. J. Biomed. Mater. Res., 30, 341–351.
- 20. Vargas, K.F., Borghetti, R.L., Moure, S.P., Salum, F.G., Cherubini, K,. Figueiredo, M.A.Z. 2012. Use of polymethylmethacrylate as permanent filling agent in the jaw, mouth and face regions--implications for dental practice. Gerodontology, 29, e16-22. DOI: 10.1111/j.1741- 2358.2011.00479.x
- 21. Xue, Z., He, D., Xie, X. 2015. Poly(ethylene oxide) based electrolytes for lithium-ion batteries. J. Mater. Chem. A(3), 19218–19253.
- 22. Zhang, H., Chen, G. 2009. Potent antibacterial activities of Ag/ TiO2 nanocomposites powders synthesized by a one-potsol-gel method. Environ Sci Technol., 34, 2905-2910.
- 23. Zhou, H., Schön, E.-M., Wang, M., Glassman, M.J., Liu, J., Zhong, M., Díaz, D.D., Olsen, B.D., Johnson, J.A. 2014. Crossover experiments applied to network formation reactions: Improved strategies for counting elastically inactive molecular defects in PEG gels and hyperbranched polymers. J. Am. Chem. Soc., 136, 9464–9470.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb95d9c2-6bd6-4049-83b8-7ab721bcce40