PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Start-up and acceleration control of the turbine engine with the detonation combustion chamber

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of tests of helicopter turbine engine, where the classic combustion chamber was replaced with an innovative solution. In this chamber instead of the classic combustion deflagration, was generated a rotating detonation. Theoretical considerations expected to get a higher engine efficiency, because as the thermodynamic Fickett-Jacobs cycle, which can describe the working principle turbine engine detonation chamber, has a higher efficiency than a Brayton cycle, according to which the engines of conventional chamber are working. The appearance of detonation combustion was diagnosed basing on observation of the gas pressure flue in the chamber, using piezoelectric sensors. Before the detonation chamber was used in turbine engine, a series of problems on the various methods of initiation of detonation process and the procedures for controlling the flow rate into the chamber of air and fuel were solved. There was a test stand constructed, which used a helicopter turbine engine GTD-350, wherein the jugs combustion chamber was replaced with detonation chamber. A control system for the flow of fuel in the combustion chamber was developed: aviation kerosene Jet-A1 with addition of hydrogen. With its use obtained unfailing starts of chamber, also the engine running on the idle and on the flight range and accelerations at idle range to flight range. The possibility of the detonation combustion for a long time, especially in transient states - practically limited only by the capacity of fuel tanks – is the achievement of the research team.
Twórcy
autor
  • Institute of Aviation Krakowska Avenue 110/114, 02-256 Warsaw, Poland Tel.: +48 22 8460011, fax: +48 22 8464432
Bibliografia
  • [1] Baker, W. E, Tang M. J., Gas, Dust and Hybrid Explosions, Fundamental Studies in Engineering 13, 1991.
  • [2] Bykovski, F. A., Verdernikov, E. F, Polozov, S. V., Golubev, Yu. V, Initiation of Detonation in Flows of Fuel-Air Mixtures, Combustion, Explosion and Shock Waves, Vol. 43, No. 3, 2007.
  • [3] Dzierżanowski, P., Turbine jet engines, Ed. Kom. i Łączności, Warsaw 1983.
  • [4] Kindracki, J., Experimental studies and numerical simulations of a rotating detonation initiation process gas, Doctoral Thesis, promoter Piotr Wolański, Fac. Power and Aeronautical Engineering, Warsaw University of Technology, 2008.
  • [5] Kindracki, J., Wolański, P., Laboratory studies rotating detonation in the aspect applications in the jet engine, Polish Astronautical Society "Progress Astronautics", T. 29, No 1, 2006.
  • [6] Kuo, K., Principles of combustion, Wiley, New York 1986.
  • [7] Lee, J. H., Matsui, H., A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures, Combustion and Flame, 28, 1977.
  • [8] Roy, G. D., Frolov, S. M., Borisov, A. A., Netzer, D. W., Pulse detonation propulsion: challenges, current status, and future perspective, Progress in Energy and Combustion Science 30 pp. 545-672, 2004.
  • [9] Schroeder, V., Holtappels, K., Explosion Characteristics of Hydrogen-Air and Hydrogen-Oxygen Mixtures at Elevated Pressures, Research Center Jűlich, Germany, European research project „SAFEKINEX”, 2003..2007.
  • [10] Wolanski, P., Fujiwara, T., Mitsubishi Heavy Industries, Detonation Engine and Flying Object Provided Therewith, JP Application, No. 2004-191793.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb93295b-ab47-4b00-9dbe-5da4ceaf400f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.