NANOHYDROGELS BASED ON SELF-ASSEMBLY OF CATIONIC CURDLAN AND ANIONIC HYDROXYPROPYLCELLULOSE DERIVATIVES FOR PIROXICAM DELIVERY

D. Lachowicz^{1*}, A. Kaczyńska², A. Bernasik³, A. Karewicz², K. Berent¹, S. Zapotoczny²

¹ ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, POLAND ² FACULTY OF CHEMISTRY, JAGIELLONIAN UNIVERSITY, POLAND

³ FACULTY OF PHYSICS AND APPLIED COMPUTER SCIENCE, AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, POLAND *E-MAIL: DOROTA.BIELSKA@AGH.EDU.PL

[ENGINEERING OF BIOMATERIALS 158 (2020) 17]

Introduction

Piroxicam is a nonsteroidal, anti-inflammatory drug (NSAID) belonging to the oxicam group. It shows analgesic properties, as well as the anti-inflammatory and antipyretic activity. Unfortunately, piroxicam is only sparingly soluble in water. We believe that an appropriate nanocarrier can effectively increase its bioavailability. Here, we propose self-organizing, polysaccharide-based, nanoparticulate system designed for piroxicam delivery.

Materials and Methods

¹H NMR, XPS and IR spectroscopy were used to characterise polysaccharides modified in order to obtain self-organizing system. The obtained nanoparticles were characterized using dynamic light scattering (DLS) and zeta potential measurements. The structure of the nanoaggregates was studied by SEM and AFM.

Results and Discussion

A nanoparticulate system based on the ionic modifications of natural polymers was obtained. Two derivatives of natural polysaccharides were successfully synthesized and characterized: cationic curdlan (modified with glcydyltrimethylammonium groups) and anionic hydroxypropylcellulose containing styrenesulfonate groups. Due to the polycation-polyanion interactions they spontaneously self-assemble into nanoparticles in water. The size and surface charge of the nanoparticles can be controlled by the polycation/polyanion ratio. The resulting structures are spherical, with diameters in the range of 200 -300 nm, as confirmed by AFM, SEM, and DLS measurements. The size of the nanospheres decreases in elevated temperatures. The binding constant (Ka) of piroxicam to the anionic hydroxypropylcellulose (HPC-SSS) was determined by spectrophotometric measurements. The value of Ka was calculated according to Benesi-Hildebrand equation to be Ka. = (2.6 \pm 0.14) × 10³ M⁻¹. Piroxicam was effectively entrapped inside nanospheres.

Conclusions

In conclusion, we have obtained a novel, self-organizing nanoparticulate system, based on natural polymers – curdlan and hydroxypropylcellulose. We believe it constitutes a promising carrier for piroxicam, as it provides hydrophilicity and protects the drug from the unfavourable conditions. Biological tests are in progress.

Acknowledgments

We thank the National Science Centre (NCN) for the financial support in the form of the project UMO-2014/15/D/ST4/02770.

17