PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental determination of the void volume fraction for S235JR steel at failure in the range of high stress triaxialities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the critical void volume fraction fF representing the size of microdefects in a material at the time of failure. The parameter is one of the constants of the Gurson-Tvergaard-Needleman (GTN) material model that need to be determined while modelling material failure processes. In this paper, an original experimental method is proposed to determine the values of fF. The material studied was S235JR steel. After tensile tests, the void volume fraction was measured at the fracture surface using an advanced technique of quantitative image analysis The material was subjected to high initial stress triaxialities T0 ranging from 0.556 to 1.345. The failure processes in S235JR steel were analysed taking into account the influence of the state of stress.
Twórcy
  • Kielce University of Technology, 7. Tysiąclecia Państwa Polskiego Al., 25-314 Kielce, Poland
Bibliografia
  • [1] C. Ruggieri, Numerical investigation of constraint effects on ductile fracture in tensile specimens, J. Braz. Soc. Mech. Sci. 26, 190-199 (2004).
  • [2] P.G. Kossakowski, W. Wciślik, Experimental determination and application of critical void volume fraction fc for S235JR steel subjected to multi-axial stress state, in: T. Łodygowski, J. Rakowski, P. Litewka (Eds.), Recent Advances in Computational Mechanics, 303-309, CRC Press/Balkema, London, 2014.
  • [3] P.G. Kossakowski, An analysis of the load-carrying capacity of elements subjected to complex stress states with a focus on the microstructural failure, Arch. Civ. Mech. Eng. 10, 15-39 (2010).
  • [4] P.G. Kossakowski, Microstructural failure criteria for S235JR steel subjected to spatial stress states, Arch. Civ. Mech. Eng. 15, 195-205 (2015).
  • [5] L.M. Kachanov, Time of the rupture process under creep conditions, Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnicheskikh Nauk 8, 26-31 (1958).
  • [6] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media, J. Eng. Mater-T. ASME 99, 2-15 (1977).
  • [7] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fracture 17, 389-407 (1981).
  • [8] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metall. 32, 157-169 (1984).
  • [9] V. Tvergaard, Material failure by void growth to coalescence, Adv. Appl. Mech. 27, 83-151 (1989).
  • [10] J. Faleskog, X. Gao, C.F. Shih, Cell model for nonlinear fracture analysis - I. Micromechanics calibration, Int. J. Fracture 89, 355-373 (1998).
  • [11] I.I. Cuesta, J.M. Alegre, R. Lacalle, Determination of the Gurson- Tvergaard damage model parameters for simulating small punch tests, Fatigue Fract. Eng. M. 33, 703-713 (2010).
  • [12] Z.L. Zhang, C. Thaulow, J. Ødegård, A Complete Gurson model approach for ductile fracture, Eng. Fract. Mech. 67, 155-168 (2000).
  • [13] S. Aoki, K. Amaya, M. Sahashi, T. Nakamura, Identification of Gurson’s material constants by using Kalman filter, Comput. Mech. 19, 501-506 (1997).
  • [14] M. Springmann, M. Kuna, Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques, Comp. Mater. Sci. 32, 544-552 (2005).
  • [15] J. Zhong, T. Xu, K. Guan, B. Zou, Determination of Ductile Damage Parameters Using Hybrid Particle Swarm Optimization, Exp. Mech. 56, 945-955 (2016).
  • [16] W. Wciślik, Numerical determination of critical void nucleation strain in the Gurson-Tvergaard-Needleman porous material model for low stress state triaxiality ratio, Proceeding of METAL 2014: 23rd International Conference on Metallurgy and Materials, Brno, 794-800 (2014).
  • [17] P.G. Kossakowski, Stress Modified Critical Strain criterion for S235JR steel at low initial stress triaxiality, J. Theor. Appl. Mech. 52, 995-1006 (2014).
  • [18] P.G. Kossakowski, An analysis of the Tvergaard parameters at low initial stress triaxiality for S235JR steel, Pol. Marit. Res. 21, 100-107 (2014).
  • [19] P.G. Kossakowski, W. Wciślik, Effect of critical void volume fraction fF on results of ductile fracture simulation for S235JR steel under multi-axial stress states, Key Eng. Mat. 598, 113-118 (2014).
  • [20] W. Wciślik, Experimental determination of critical void volume fraction fF for the Gurson Tvergaard Needleman (GTN) model, Structural Integrity Procedia 2, 1676-1683 (2016).
  • [21] PN-EN 10025-2:2007 Hot-rolled structural steel. Part 2-Technical delivery conditions for non-alloy structural steels.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb8628fb-1ae2-42dd-b36f-d8e0a1f3d93f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.