PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparison of the Effectiveness of Biological and Chemical Leaching of Copper, Nickel and Zinc from Circuit Boards

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The progress of civilization brings with it the development of advanced technologies and increased demand for electric and electronic equipment. That directly influences the increase of produced e-waste, called Waste of Electrical and Electronic Equipment (WEEE). Due to the fact that deficit and critical metals are running out throughout the World, and due to increased demand for those metals, their alternative source and recovery methods have to be found. As an alternative biotechnological methods can be used. The advantage of biological methods over chemical processes is its selectivity in regard to different metal groups, simplicity of technological process, economic effectivity (lower energy expenditure) and lack of negative impact on environment. The aim of this work was to compare the effectiveness of biological and chemical leaching of copper (Cu), nickel (Ni) and zinc (Zn) from circuit boards (PCBs).The experiment was conducted in variants which included factors such as temperature (24°C and 37°C) and speed of mixing. In case of all metals higher effectiveness was achieved in variants conducted in the temperature of 24°C and faster mixing than in temperature of 37°C and slower mixing. In case of cooper and zinc better results of metal removal were achieved in bioleaching variant. In case of nickel faster result of metal removal were achieved in chemical leaching, but at the end of the experiment the effectivity of chemical leaching and biological leaching was similar. The maximum efficiency of cooper, nickel and zinc release was adequately 100%, 90%, 65%.
Słowa kluczowe
Rocznik
Strony
62--69
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Science, Department of Environmental Biotechnology and Bio-economy, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
  • Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Science, Department of Environmental Biotechnology and Bio-economy, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
  • Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Science, Department of Environmental Biotechnology and Bio-economy, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
  • Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Science, Department of Environmental Biotechnology and Bio-economy, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
  • Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Science, Department of Environmental Biotechnology and Bio-economy, ul. Wóycickiego 1/3, 01-938 Warsaw, Poland
Bibliografia
  • 1. Arinanda M., Haute Q., Lambert F. Gaydardzhiev S. 2019. Effects of operational parameters on the bioassisted leaching of metals from pyrolized printed circuit boards, Minerals Engineering, 13416–22. DOI: 10.1016/j.mineng.2019.01.021.
  • 2. Baldé C.P., Forti V., Gray V., Kuehr R., Stegmann S. 2017. The Global E-waste Monitor 2017: Quantities, Flows and Resources, United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna. https://www.itu.int/en/ITU-D/Climate-Change/Documents/GEM%202017/Global-E-waste%20Monitor%202017%20.pdf.
  • 3. Cui J., Zhang L. 2008. Metallurgical recovery of metals from electronic waste: A review, Journal of Hazardous Materials, 158, 228–256. DOI: 10.1016/j.jhazmat.2008.02.001.
  • 4. Demirel C., Menekşe M., Balci N., Sonmez M.S. 2014.Bioleaching of metals from printed circuit boards by Acidithiobacillus thiooxidans, Conference Paper, Prague. DOI: 10.13140/2.1.2503.2483.
  • 5. Ghosh B., Ghosh M.K., Parhi P., Mukherjee P.S., Mishra B.K. 2015. Waste printed circuit boards recycling: an extensive assessment of current status, Journal of Cleaner Production, 94, 5–19. DOI: 10.1016/j.jclepro.2015.02.024.
  • 6. Gu W., Bai J., Dai J., Zhang C., Yuan W., Wang J., Wang P., Zhao X. 2014.Characterization of Extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans) Bioleaching Copper from Flexible PCB by ICP-AES, Journal of Spectroscopy, 1–8. DOI: 10.1155/2014/269351.
  • 7. Işıldar A., Hullebusch E.D., Lenz M., Laing G. D., Marra A., Cesaro A., Panda S., Akcil A., Kucuker M.A., Kuchta K. 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review, Journal of Hazardous Materials, 362, 467–481. DOI: 10.1016/j.jhazmat.2018.08.050.
  • 8. Karwowska E., Andrzejewska-Morzucha D., Łebkowska M., Tabernacka A., Wojtkowska M., Telepko A., Konarzewska A. 2014. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria, Journal of Hazardous Materials, 264, 203–210. DOI: 10.1016/j.jhazmat.2013.11.018.
  • 9. Kaya M. 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes, Waste Management, 10(2) 259–270. DOI: 10.1016/j.wasman.2016.08.004
  • 10. Kaya M. 2018. Current WEEE recycling solutions, Waste Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods, Elsevier, 33–89. DOI: 10.1016/B978–0-08–102057–9.00029–9.
  • 11. Lee J., Pandey B.D. 2012. Bio-processing of solid wastes and secondary resources for metal extraction – A review, Waste Management, 32, 3–18. DOI: 10.1016/j.wasman.2011.08.010.
  • 12. Mahmoud A., Cézac P., Hoadley F.A.H., Contamine F., D’Hugues P. 2017. A review of sulfide minerals microbially assisted leaching in stirred tank reactors, International Biodeterioration & Biodegradation, 119, 118–149. DOI: 10.1016/j. ibiod.2016.09.015.
  • 13. Pietrzyk-Sokulska E. 2016. Recykling jako potencjalne źródło pozyskiwania surowców mineralnych z wybranych grup odpadów, Zeszyty naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 92, 141–161.
  • 14. Rizki I. N., Tanaka Y., Okibe N. 2019. Thiourea bioleaching for gold recycling from e-waste, Waste Management, 84,158–165. DOI: 10.1016/j.wasman.2018.11.021.
  • 15. Schippers A. 2004. Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils, Biogeochemistry – Past and Present, Special Paper, 379. Geological Society of America, Boulder, Colorado, USA, 49–62. DOI: 10.1130/0–8137–2379–5.49.
  • 16. Smakowski T.J. 2011. Surowce mineralne – krytyczne czy deficytowe dla gospodarki UE i Polski, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energii Polskiej Akademii Nauk, 81, 59–68. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-articleAGHM-0042–0020/c/httpwww_min-pan_krakow_plwydawnictwazn81zn-smakowski.pdf
  • 17. Styś T., Foks R. 2016. Rynek gospodarowania zużytym sprzętem elektrycznym i elektronicznym w Polsce, Perspektywa 2030, Instytut Sobieskiego, Warszawa. http://sobieski.org.pl/wp-content/uploads/2018/08/Stys-Foks-Gospodarowanie-ZSEEPDF.pdf
  • 18. Wang J., Bai J., Xu J., Liang B. 2019.Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixtureJournal of Hazardous Materials, 172, 1100–1105. DOI: 10.1016/j.jhazmat.2009.07.102.
  • 19. Widmer R., Oswald K.H., Sinha-Kheeetriwal D., Schnelmann M., Boni H. 2005. Global perspectives on e-waste, Environmental Impact Assessment Review, 25, 436–458. DOI: 10.1016/j.eiar.2005.04.001.
  • 20. Woynarowska A., Żukowski W. 2012.Współczesne metody recyklingu odpadów elektronicznych, Czasopismo Techniczne, Chemia, 16,175–185.
  • 21. Xin B., Zhang D., Zhang X., Xia Y., Wu F., Chen S., Li L. 2009. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and ironoxidizing bacteria, Bioresource Technology, 100, 6163–6169. DOI: 10.1016/j.biortech.2009.06.086.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb833f52-8a25-4166-8b79-fb34faba8559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.