Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we propose two book recommendation methods based on emotions extracted from user reviews, using content-based filtering and collaborative filtering. The methods were experimentally evaluated on our own dataset that we collected from Goodreads -- a popular website with large database of books and readers reviews. We created an experimental setup where the recommendation algorithms for carrying out the evaluation using two proposed evaluation metrics: coverage and average recommendations similarity.
Rocznik
Tom
Strony
275--280
Opis fizyczny
Bibliogr. 16 poz., tab., wz., il.
Twórcy
autor
- Department of Computers and Information Technology University of Craiova, 200585, Craiova, Romania
autor
- Department of Computers and Information Technology University of Craiova, 200585, Craiova, Romania
Bibliografia
- 1. Aggarwal, C.: Recommender Systems The Textbook (2016) Springer International Publishing
- 2. Agrawal, R.: How to Build a Book Recommendation System (2021) https://www.analyticsvidhya.com/blog/2021/06/build-book-recommendation-system-unsupervised-learning-project/
- 3. Dey, V.: Collaborative Filtering vs Content-Based Filtering for Recommender Systems (2021) https://analyticsindiamag.com/collaborative-filtering-vs-content-based-filtering-for-recommender-systems/. Last accessed 10 Feb 2023
- 4. Dubey, H., Gandhimathi, S. K.: Book Recommendation System Using Deep Learning (GPT3) International Research Journal of Engineering and Technology (IRJET), vol. 9(5) (2022)
- 5. Karbhari, V.:What is a cosine similarity matrix? (2020) https://medium.com/acing-ai/what-is-cosine-similarity-matrix-f0819e674ad1. Last accessed 10 Feb 2023
- 6. Kumar, A., Chawla, S.: Framework for Hybrid Book Recommender System based on Opinion Mining. International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Vol.8(4) (2019) 10.35940/ijrte.D7518.118419
- 7. Luţan, E.-R., Bădică, C.: Emotion-Based Literature Book Classification Using Online Reviews. Electronics 2022, 11, 3412. https://doi.org/10.3390/electronics11203412
- 8. Martín, J.,Ribé, E.: BRAIN L: A book recommender system (2023) 10.48550/arXiv.2302.00653
- 9. Melville, P., Vikas, S.: Recommender systems. Encyclopedia of machine learning 1 pp. 829-838 (2010)
- 10. Movie Recommendation Model Using Cosine_Similarity and CountVectorizer: Scikit-Learn (2019) https://regenerativetoday.com/movie-recommendation-model-using-cosine_similarity-and-countvectorizer-scikit-learn/ Last accessed 31 Mar 2023
- 11. Polignano, M., Narducci, F. de Gemmis, M. Semeraro, G.: Towards Emotion-aware Recommender Systems: an Affective Coherence Model based on Emotion-driven Behaviors. Expert Systems with Applications 2021, 170, 114382, https://doi.org/10.1016/j.eswa.2020.114382
- 12. Rana, C., Jain, S. K.: Building a Book Recommender system using time based content filtering. WSEAS Transactions on Computers 11.2 (2012): 27-33.
- 13. Resnick, P., Hal R. V.: Recommender systems. Communications of the ACM 40.3 pp. 56-58 (1997)
- 14. Roy, D., Dutta, M.: A systematic review and research perspective on recommender systems. Journal of Big Data 9, 59 (2022). https://doi.org/10.1186/s40537-022-00592-5
- 15. Usman, A., Roko, A., Muhammad, A.B. Almu, A.: Enhancing Personalized Book Recommender System. Int. J. Advanced Networking and Applications, vol.14(03), pp. 5486–5492 (2022)
- 16. Zhang, S., Lau, J. H., Zhang, X. J., Chan, J., Paris, C.: Discovering Relevant Reviews for Answering Product-Related Queries. 2019 IEEE International Conference on Data Mining (ICDM) 10.1109/ICDM.2019. 00192
Uwagi
1. Main Track Short Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb81b336-1523-4ddd-966b-d2f7e4d1e05e