PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and Experimental Characterization of Processing Parameters in Vertical Twin Roll Casting of Aluminium Alloy A356

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Production of near net shape thin strips using vertical twin roll casting method has been studied. In a typical VTRC process, the simultaneous action of solidification and rolling makes the process quite attractive as well as complicated. An industrially popular alloy A356 has been chosen for the VTRC processing. It is challenging to identify VTRC processing parameters for the alloy to produce thin strips because of its freezing range and complex composition. In the present work processing parameters of VTRC like roll speed, roll gap, melt superheat and the interface convective heat transfer coefficient have been investigated through modelling of the process. The mathematical model was developed which simultaneously solves the heat transfer, fluid flow and solidification, using commercial software COMSOL Multiphysics 5.4. VTRC sheets of alloy A356 were produced in an experimental set up and attempts were made to correlate the microstructures of VTRC A356 alloy to that predicted from the numerical studies to validate the model.
Rocznik
Strony
121--132
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Indian Institute of Technology Bhubaneswar/Kharagpur, India
autor
  • Indian Institute of Technology Bhubaneswar, India
autor
  • Indian Institute of Technology Bhubaneswar, India
autor
  • Indian Institute of Technology Bhubaneswar, India
Bibliografia
  • [1] Hong, S., Kim, S., Lee, J., Kwon, Y., Lee, Y. & Lee, J. (2007). Effect of microstructural variables on tensile behaviour of A356 cast aluminium alloy. Materials Science and Technology. 23(7), 810-814. DOI: 10.1179/ 174328407x185866.
  • [2] Ordóñez, S., Bustos, O. & Colás, R. (2009). Thermal and Microstructural analysis of an A356 aluminium alloy solidified under the effect of magnetic stirring. International Journal of Metalcasting 3(3), 37-41. DOI:10.1007/bf03355451.
  • [3] Haga, T., Takahashi, K., Ikawa, M., & Watari, H. (2003). A vertical-type twin roll caster for aluminum alloy strips. Journal of Materials Processing Technology. 140 (1-3), 610-615. DPI: 10.1016/s0924-0136(03)00835-5.
  • [4] Yuan, H., Li, J., Cai, D., Yang, Q. & Liu, W. (2007). Quantitative Analysis of Texture Evolution of Direct Chill Cast and Continuous Cast AA 1100 Aluminum Alloys during Cold Rolling. Materials Transactions. 48(7), 1886-1890. DOI: 10.2320/matertrans.mra2007023.
  • [5] Zhao, Y. M., Liu, W. C. & Morris, J.G. (2003). Comparison of texture evolution during cold rolling between direct chill and continuous cast aluminium alloy 5052. Materials Science and Technology. 19(10), 1379-1385. DOI: 10.1179/026708303225008004.
  • [6] Slámová, M., Karlı́k M, Robaut, F., Sláma, P. & Véron, M. (2002). Differences in microstructure and texture of Al–Mg sheets produced by twin-roll continuous casting and by direct-chill casting. Materials Characterization. 49(3), 231-240. DOI: 10.1016/s1044-5803(03)00011-1.
  • [7] Maleki, A., Taherizadeh, A. & Hosseini, N. (2017). Twin Roll Casting of Steels: An Overview. ISIJ International. 57(1), 1-14. DOI: 10.2355/ isijinternational.isijint-2016-502.
  • [8] Barekar, N.S. & Dhindaw, B.K. (2014). Twin-Roll Casting of Aluminum Alloys – An Overview. Materials and Manufacturing Processes. 29(6), 651-661. DOI: 10.1080/10426914.2014.912307.
  • [9] Miyazawa, K. & Szekely, J. (1981). A mathematical model of the splat cooling process using the twin-roll technique. Metallurgical Transactions A. 12(6), 1047-1057. DOI: 10.1007/bf02643486.
  • [10] Sahoo, S. & Ghosh, S. (2013). Heat Transfer, Solidification, and Microstructural Evolution in Al-33Cu Alloy during the Starting of Twin Roll Strip Casting. Steel Research International. 85(2), 207-218. DOI: 10.1002/srin.201200262.
  • [11] Sahoo, S. (2016). Review on Vertical Twin-Roll Strip Casting: A Key Technology for Quality Strips. Journal of Metallurgy. 2016, 1-13. DOI: 10.1155/2016/1038950.
  • [12] Sahoo, S., Kumar, A., Dhindaw, B.K. & Ghosh, S. (2012). Modeling and Experimental Validation of Rapid Cooling and Solidification during High-Speed Twin-Roll Strip Casting of Al-33 wt pct Cu. Metallurgical and Materials Transactions B. 43(4), 915-924. DOI: 10.1007/s11663-012-9659-x.
  • [13] Sahoo, S. (2015). Effect of process parameters on solidification of Al-33Cu strip in high speed twin roll strip casting- A numerical study. IOP Conference Series: Materials Science and Engineering. 75, 012013. DOI: 10.1088/1757-899x/75/1/012013.
  • [14] Bondarenko, S., Stolbchenko, M., Schaper, M. & Grydin, O. (2018). Numerical Analysis of Twin-Roll Casting of Strips with Profiled Cross-Section. Materials Research. 21 (4). DOI:10.1590/1980-5373-mr-2017-1098.
  • [15] Patil, Y.G. & Shukla, A.K. (2019). Numerical Simulation of the Effect of Process Parameters on Cooling Rate and Secondary Dendrite Arm Spacing in High-Speed Twin Roll Strip Casting of Al–15 wt % Cu Alloy. Journal of Heat Transfer. 141(10). DOI:10.1115/1.4044108.
  • [16] Rodrigues, C.M., Ludwig, A., Wu, M., Kharicha, A. & Vakhrushev, A. (2019). A comprehensive analysis of Macrosegregation formation during twin-roll casting. Metallurgical and Materials Transactions B. 50(3), 1334-1350. DOI:10.1007/s11663-019-01527-x.
  • [17] Li, Y., He, C., Li, J., Wang, Z., Wu, D. & Xu, G. (2020). A novel approach to improve the microstructure and mechanical properties of al–mg–Si aluminum alloys during twin-roll casting. Materials. 13(7), 1713. DOI:10.3390/ma13071713.
  • [18] Wang, B., Zhang, J., Fan, J., Zhao, S., Ren, S. & Chou, K. (2010). Modelling of melt flow and solidification in the twin-roll strip casting process. Steel research international. 80(3), 218-222. DOI:10.1002/srin.201090074.
  • [19] Launder, B. & Spalding, D. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics And Engineering. 3(2), 269-289. DOI: 10.1016/0045-7825(74)90029-2.
  • [20] Launder, B. & Sharma, B. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer. 1(2), 131-137. DOI:10.1016/0094-4548(74)90150-7.
  • [21] Voller, V., Brent, A. & Prakash, C. (1989). The modelling of heat, mass and solute transport in solidification systems. International Journal of Heat and Mass Transfer. 32(9), 1719-1731. DOI:10.1016/0017-9310(89)90054-9.
  • [22] Voller, V. & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal Of Heat And Mass Transfer. 30(8), 1709-1719. DOI: 10.1016/0017-9310(87)90317-6.
  • [23] Yao, M. & Chait, A. (1993). An alternative formulation of the apparent heat capacity method for phase-change problems. Numerical Heat Transfer, Part B: Fundamentals. 24(3), 279-300. DOI:10.1080/10407799308955894.
  • [24] Thomas, B.G. & Najjar, F.M. (1991). Finite element modelling of turbulent fluid flow and heat transfer in continuous casting. Applied Mathematical Modelling. 15(5), 226-243. DOI:10.1016/0307-904x(91)90001-6.
  • [25] Das, P., Samanta, S.K., Chattopadhyay, H., Sharma, B.B. & Dutta, P. (2013). Eulerian two-phase flow simulation and experimental validation of semisolid slurry generation process using cooling slope. Materials Science and Technology. 29(1), 83-92. DOI: 10.1179/1743284712y.0000000075.
  • [26] Permanent Mold Casting of Aluminum Alloys. (2018). Aluminum Science and Technology. 209-231. DOI 10.31399/asm.hb.v02a.a0006513
  • [27] Scanning electron microscopy. (2005). Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. 41-75. DOI:10.1017/cbo9780511610561.005.
  • [28] Murthy, I. N. & Rao, J. B. (2017). Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al–Si alloy castings made in sand and Fe-Cr slag molds. International Journal of Minerals, Metallurgy, and Materials. 24(7), 784-793. DOI: 10.1007/s12613-017-1462-x.
  • [29] Cho, J.-I., Kim, C.-W., Kim, Y.-C., Choi, S.-W. & Kang, C.-S. (2012). The Relationship between Dendrite Arm Spacing and Cooling Rate of Al-Si Casting Alloys in High Pressure Die Casting. ICAA13: 13th International Conference on Aluminum Alloys, 1493-1498. DOI:10.1002/9781118495292.ch226.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb7dc0ff-e113-4918-b311-346efa7d2893
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.