PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and Testing of a Propulsion System for a Space Robot Platform Operating in 2D Microgravity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Robotic arms for use aboard satellites continue to attract much research and development interest due to the vast range of potential applications, ranging from satellite servicing to debris removal. The challenges faced relate to the extent of the complexity of the system and the demands made. The Space Research Centre of the Polish Academy of Sciences, in collaboration with the Warsaw University of Technology, was engaged in research aimed at designing and constructing a robotic platform that was equipped with air bearings and operated on a granite table - thereby simulating 2D microgravity conditions. The paper describes the design process of the propulsion system for the platform, which is a new direction for cold-gas thrusters. The specific requirements regarding the propulsion system, solutions for design problems, and the measurement methods and instrumentation were covered briefly. These were followed by presenting the facility configuration, evaluation methodology, representative results of single-engine performance, and platform-propulsive module integration mechanism. Finally, on-board propulsion test results were presented in which a comparison of two maneuvers was given, namely, the realization of the same trajectory by the platform in two distinct robotic arm configurations.
Rocznik
Strony
384--409
Opis fizyczny
Bibliogr. 48 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowowiejska 21/25 Street, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowowiejska 21/25 Street, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowowiejska 21/25 Street, 00-665 Warsaw, Poland
autor
  • Space Research Centre of the Polish Academy of Sciences, Bartycka 18A Street, 00-716 Warsaw, Poland
  • Space Research Centre of the Polish Academy of Sciences, Bartycka 18A Street, 00-716 Warsaw, Poland
  • Space Research Centre of the Polish Academy of Sciences, Bartycka 18A Street, 00-716 Warsaw, Poland
Bibliografia
  • [1] Waltz, D. On-Orbit Servicing of Space Systems. Kriger Publishing Company, 1993; ISBN: 089464002X.
  • [2] Liou, J.C.; Johnson, N.L. Instability of the Present LEO Satellite Populations. Adv. Sp. Res. 2008, 41: 1046-1053; https://doi.org/10.1016/j.asr.2007.04.081.
  • [3] Liou, J.C.; Johnson, N.L.; Hill, N.M. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal. Acta Astronaut. 2010, 66: 648-653; https://doi.org/10.1016/j.actaastro.2009.08.005.
  • [4] Bischof, B.; Kerstein, L.; Starke, J.; Guenther, H.; Foth, W.; Al, E. ROGER ‒ Robotic Geostationary Orbit Restorter. Proc. 54th Int. Astronaut. Congr. 2003, Bremen, https://doi.org/10.2514/6.IAC-03-IAA.5.2.08.
  • [5] Del Cura, J.; Saavedra, G.; Sánchez-Maestro, R.; Sebastián, A.; Tarabini, L.; Ortega, G. Conexpress Orbital Life Extension Vehicle Cx-Olev Gnc. Proc. 6th Int. ESA Conf. Guid. Navig. Control Syst. 2006.
  • [6] Xu, W.; Liang, B.; Li, C.; Xu, Y. Autonomous Rendezvous and Robotic Capturing of Non-Cooperative Target in Space. Robotica 2010, 28: 705-718; https://doi.org/10.1017/S0263574709990397.
  • [7] Oda, M. Summary of NASDA’s ETS-VII Robot Satellite Mission. J. Robot. Mechatronics 2000, 12: 417-424; https://doi.org/10.20965/jrm.2000.p0417.
  • [8] Ogilvie, A.; Allport, J.; Hannah, M.; Lymer, J. Autonomous Satellite Servicing Using the Orbital Express Demonstration Manipulator System. Proc. 9th Int. Symp. Artif. Intell. Robot. Autom. Sp., 2008.
  • [9] Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A Review of Space Robotics Technologies for On-Orbit Servicing. Prog. Aerosp. Sci. 2014, 68: 1-26; https://doi.org/10.1016/j.paerosci.2014.03.002.
  • [10] Biesbroek, R.; Soares, T.; Husing, J.; Innocenti, L. A Design Study for the Safe Removal of a Large Space Debris. Proc. 6th Eur. Conf. Sp. Debris, 2013.
  • [11] Schildknecht, T.; Krag, H.; Flohrer, T. Determining, Monitoring and Modelling the Attitude Motion of Potential ADR Targets. Proc. Clean Sp. Ind. Days, 2016.
  • [12] Jaekel, S.; Lampariello, R.; Rackl, W.; Brunner, B.; Porges, O.; Kraemer, E.; Pietras, M.; Ratti, J.; Biesbroek, R. Robotic Aspects and Analyses in the Scope of the e.deorbit Mission Phase B1. Proc. 14th Symp. Adv. Sp. Technol. Robot. Autom., 2017.
  • [13] Wieser, M.; Richard, H.; Hausmann, G.; Meyer, J.C.; Jaekel, S.; Lavagna, M.; Biesbroek, R. e.Deorbit Mission: OHB Debris Removal Concepts. Proc. 13th Symp. Adv. Sp. Technol. Robot. Autom., 2015.
  • [14] Jenkins, D.R. Space Shuttle: The History of the National Space Transportation System, The First 100 Missions. 3rd ed., 2001.
  • [15] Stieber, M.E.; Hunter, D.G.; Abramovici, A. Overview of the Mobile Servicing System for the International Space Station. Proc. 5th i-SAIRAS Conf., Noordwijk, Netherlands, 1999.
  • [16] Boumans, R.; Heemskerk, C. The European Robotic Arm for the International Space Station. Rob. Auton. Syst. 1998, 23: 17-27; https://doi.org/10.1016/S0921-8890(97)00054-7.
  • [17] Albu-Schäffer, A. Control of Robots with Elastic Joints Using the DLR Lightweight Arms as an Example. (in German) Doctoral Thesis, Technische Universisät München, Munich, Germany, 2002; https://api.semanticscholar.org/CorpusID:171419779/.
  • [18] Seweryn, K.; Grassmann, K.; Rutkowski, K.; Rybus, T.; Wawrzaszek, R. Design and Development of Two Manipulators as a Key Element of a Space Robot Testing Facility. Arch. Mech. Eng. 2015, 62(3): 377-394; https://doi.org/10.1515/meceng-2015-0022.
  • [19] Oleś, J.; Seweryn, K.; Surowiec, M.; Wojtyra, M.; Pietras, M.; Scheper, M. Testing and Simulation of Contact During On-Orbit Operations. Proc. 14th Symp. Adv. Sp. Technol. Robot. Autom., 2017.
  • [20] Menon, C.; Busolo, S.; Cocuzza, S.; Aboudan, A.; Bulgarelli, A.; Bettanini, C.; Marchesi, M.; Angrilli, F. Issues and Solutions for Testing Free-Flying Robots. Acta Astronaut. 2007, 60: 957-965; https://doi.org/10.1016/j.actaastro.2006.11.014.
  • [21] Rybus, T.; Seweryn, K. Planar Air-bearing Microgravity Simulators: Review of Applications, Existing Solutions and Design Parameters. Acta Astronaut. 2016, 120: 239-259; https://doi.org/10.1016/j.actaastro.2015.12.018.
  • [22] Andrade, C.; Ramirez-Mendoza, R.; Giacoman-Zarzar, M.; Morales, R.; Fejric, A.; Saenz-Otero, A.; Miller, D.W. Robust Control Applied Towards Rendezvous and Docking. Proc. Eur. Control Conf., 2009, pp. 1854-1859; https://doi.org/10.23919/ECC.2009.7074673.
  • [23] Robertson, A.; Inalhan, G.; How, J. Spacecraft Formation Flying Control Design for the Orion Mission. Proc. Guidance, Navigation, and Control Conf. and Exhibit, Reston, Virigina, 1999, pp. 1562-1575.
  • [24] Di Mauro, G.; Schlotterer, M.; Theil, S.; Lavagna, M. Experimental Implementation of SDRE Method for Autonomous Rendezvous and Docking Maneuvering. Proc. 5th Int. Conf. Spacecr. Form. Fly. Mission. Technol., 2013, pp. 1-15.
  • [25] Virgili Llop, J.; Drew, J.; Zappulla, R.; Romano, M. Autonomous Capture of a Resident Space Object by a Spacecraft with a Robotic Manipulator: Analysis, Simulation and Experiments. Proc. AIAA/AAS Astrodynamics Specialist Conf., Reston, Virginia, 2016, pp. 1-18.
  • [26] Sutton, G.; Biblarz, O. Rocket Propulsion Elements. 8th Ed., John Wiley & Sons Inc., 2010; ISBN: 0471326429.
  • [27] Rarata, G.; Rokicka, K.; Surmacz, P. Hydrogen Peroxide as a High Energy Compound Optimal for Propulsive Applications. Cent. Eur. J. Energ. Mater. 2016, 13: 778-790; https://doi.org/10.22211/cejem/65005.
  • [28] Gohardani, A.S.; Stanojev, J.; Demairé, A.; An, K.; Persson, M.; Wingborg, N.; Nilsson, C. Green Space Propulsion: Opportunities and Prospects. Prog. Aerosp. Sci. 2014, 71: 128-149; https://doi.org/10.1016/j.paerosci.2014.08.001.
  • [29] Chen, J.; Li, G.; Zhang, T.; Wang, M.; Yu, Y. Experimental Investigation of the Catalytic Decomposition and Combustion Characteristics of a Non-Toxic Ammonium Dinitramide (ADN)-based Monopropellant Thruster. Acta Astronaut. 2016, 129: 367-373; https://doi.org/10.1016/j.actaastro.2016.09.027.
  • [30] Hwan, C.; Wook, S.; June, S. Experimental Investigation of Decomposition and Evaporation Characteristics of HAN-based Monopropellants. Combust. Flame 2014, 161: 1109-1116; https://doi.org/10.1016/j.combustflame.2013.09.026.
  • [31] Amrousse, R.; Hori, K.; Fetimi, W.; Farhat, K. Applied Catalysis B: Environmental HAN and ADN as Liquid Ionic Monopropellants: Thermal and Catalytic Decomposition Processes. Applied Catal. B, Environ. 2012, 127: 121-128; https://doi.org/10.1016/j.apcatb.2012.08.009.
  • [32] Yu, Y.S.; Li, G.X.; Zhang, T.; Chen, J.; Wang, M. Effects of Catalyst-bed’s Structure Parameters on Decomposition and Combustion Characteristics of an Ammonium Dinitramide (ADN)-based Thruster. Energy Convers. Manag. 2015, 106: 566-575; https://doi.org/10.1016/j.enconman.2015.09.036.
  • [33] Rarata, G.; Florczuk, W.; Smetek, J. Research on Preparation and Propulsive Applications of Highly Concentrated Hydrogen Peroxide. J. Aerosp. Sci. Technol. 2016, 1: 42-47; https://doi.org/10.17265/2332-8258/2016.01.006.
  • [34] Rarata, G.; Rokicka, K. The Manganese Oxides Decomposition Catalysts for Highly Concentrated Hydrogen Peroxide. Trans. Inst. Aviat. 2015, 240: 49-57; https://doi.org/10.5604/05096669.1194985.
  • [35] Surmacz, P.; Kostecki, M.; Gut, Z.; Olszyna, A. Aluminum Oxide - Supported Manganese Oxide Catalyst for a 98% Hydrogen Peroxide Thruster. J. Propuls. Power 2019, 35: 614-623; https://doi.org/10.2514/1.B37359.
  • [36] Okninski, A.; Bartkowiak, B.; Sobczak, K.; Kublik, D.; Surmacz, P.; Rarata, G.; Marciniak, B.; Wolanski, P. Development of a Small Green Bipropellant Rocket Engine Using Hydrogen Peroxide as Oxidizer. Proc. 50th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. 2014, pp. 1-10; https://doi.org/10.2514/6.2014-3592.
  • [37] Kang, H.; Jang, D.; Kwon, S. Demonstration of 500 N Scale Bipropellant Thruster Using Non-Toxic Hypergolic Fuel and Hydrogen Peroxide. Aerosp. Sci. Technol. 2016, 49: 209-214; https://doi.org/10.1016/j.flowmeasinst.2011.05.001.
  • [38] Kang, H.; Kwon, S. Green Hypergolic Combination: Diethylenetriamine-based Fuel and Hydrogen Peroxide. Acta Astronaut. 2017, 137: 25-30; https://doi.org/10.1016/j.actaastro.2017.04.009.
  • [39] Nguyen, H.; Köhler, J.; Stenmark, L. The Merits of Cold Gas Micropropulsion in State-of-the-Art Space Missions. Proc. 34th COSPAR Scientific Assembly, The Second World Space Congress, Houston, US-TX, 2002.
  • [40] Gibbon, D.; Baker, A.; Coxhill, I.; Sir, P.; Sweeting, M. The Development of a Family of Resistojet Thruster Propulsion Systems for Small Spacecraft. Proc. 17th Annu. AIAA/USU Small Satell. Conf., 2003, pp. 1-9.
  • [41] Kindracki, J.; Paszkiewicz, P.; Mężyk, Ł. Resistojet Thruster with Supercapacitor Power Source – Design and Experimental Research. Aerosp. Sci. Technol. 2019, 92: 847-857; https://doi.org/10.1016/j.ast.2019.07.010.
  • [42] Lemmer, K. Propulsion for CubeSats. Acta Astronaut. 2017, 134: 231-243; https://doi.org/10.1016/j.actaastro.2017.01.048.
  • [43] Paszkiewicz P. Experimental Characterization of a sub-Newton Electrothermal Thruster Using 98% Hydrogen Peroxide. Doctoral Thesis, Warsaw University of Technology, Warsaw, 2024.
  • [44] Rybus, T.; Nicolau-Kukliński, J.; Seweryn, K.; Barciński, T.; Ciesielska, M.; Grassmann, K.; Grygorczuk, J.; Karczewski, M.; Kowalski, M.; Krzewski, M.; Kuciński, T.; Lisowski, J.; Przybyła, R.; Skup, K.; Szewczyk, T.; Wawrzaszek, R. New Planar Air-bearing Microgravity Simulator for Verification of Space Robotics Numerical Simulations and Control Algorithms. Proc. 12th Symp. Adv. Sp. Technol. Robot. Autom. ‘ASTRA 2013’, 2013, p. 8.
  • [45] Dexler, K.E. Nanosystems: Molecular Machinery, Manufacturing and Computation. Wiley, 1992; ISBN: 978-0-471-57518-4.
  • [46] Oleś, J.; Kindracki, J.; Rybus, T.; Mężyk, Ł.; Paszkiewicz, P.; Moczydłowski, R.; Barciński, T.; Seweryn, K.; Wolański, P. A 2D Microgravity Test Bed for the Validation of Space Robot Control Algorithms. J. Autom. Mob. Robot. Intell. Syst. 2017, 11: 95-104; https://doi.org/10.14313/JAMRIS_2-2017/21.
  • [47] Zandenberg, B.T.C. Modern Liquid Propellant Rocket Engines, 2000 Outlook. Delft University of Technology, 2014; https://doi.org/10.13140/2.1.4640.0003.
  • [48] Kindracki, J.; Tur, K.; Paszkiewicz, P.; Mężyk, Ł.; Boruc, Ł.; Wolański, P. Experimental Research on Low-Cost Cold Gas Propulsion for a Space Robot Platform. Aerosp. Sci. Technol. 2017, 62: 148-157; https://doi.org/10.1016/j.ast.2016.12.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb7d0327-39d5-4351-b36a-ee61df580e0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.