PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical determination of volatile markers of bio-based plastics contaminants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, popular packages, containers and packaging made of biological materials can be a source of undesirable organic contaminants such as total volatile organic compounds (TVOC) and carcinogenic formaldehyde (HCHO) as these compounds can easily get into food. The paper presents a proposal to use an original measuring device based on electrochemical sensors DFR-08605 and SGP30 to determine the content of TVOC and HCHO released during heating of the above-mentioned materials. The proposed device was used to monitor HCHO during heating of food contact materials: bio-PET (bio-polyethylene terephthalate), bio-PE (bio-ethylene), EPP (expanded polypropylene) and PLA (polylactide). The obtained results were compared with the results of precise GC-ECD (gas chromatography with electron capture detector) analyses. The possibility of using electrochemical sensors for preliminary analyses of packaging materials was confirmed.
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Control, Robotics & Electrical Engineering, Institute of Automatic Control and Robotics, ul. Piotrowo 3a, 60-965 Poznan, Poland
  • University, Faculty of Chemistry, Department of Trace Analysis, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
  • University, Faculty of Chemistry, Department of Trace Analysis, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
  • Poznan University of Technology, Faculty of Control, Robotics & Electrical Engineering, Institute of Automatic Control and Robotics, ul. Piotrowo 3a, 60-965 Poznan, Poland
Bibliografia
  • [1] Leszczyński, K., & Żbikowska, A. (2016). Opakowania i pakowanie żywności. Wybrane zagadnienia, Wydawnictwo SGGW. (in Polish)
  • [2] Yoon, J., Kim, B., & Kim, K. (2024). Distribution of microplastics in soil by types of land use in metropolitan area of Seoul. Applied Biological Chemistry, 67(1). https://doi.org/10.1186/s13765-024-00869-8
  • [3] Li, K., Du, L., Qin, C., Bolan, N., Wang, H., & Wang, H. (2024). Microplastic pollution as an environmental risk exacerbating the greenhouse effect and climate change: a review. Carbon Research, 3(1). https://doi.org/10.1007/s44246-023-00097-7
  • [4] European Commission. (2021). Commission Regulation (EU) No 1119/2021 of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Official Journal of the European Union, L 243, 1-17. https://eur-lex.europa.eu/eli/reg/2021/1119/oj
  • [5] European Commission. (2019). Directive (EU) No 904/2019 of 5 June 2019 on the reduction of the impact of certain plastic products on the environment. Official Journal of the European Union, L 155, 1-19. https://eur-lex.europa.eu/eli/dir/2019/904/oj
  • [6] Malinowski, R. (2015). Biotworzywa jako nowe materiały przyjazne środowisku naturalnemu. Inżynieria i Ochrona Środowiska, 18, 215-231. (in Polish)
  • [7] Mościcki, L., Janssen, L.P.B.M., & Mitrus, M. (2006). Przetwórstwo skrobi termoplastycznej na cele opakowaniowe. Inżynieria Rolnicza, 6, 65-72. (in Polish)
  • [8] Latos, M., & Masek, A. (2017). Biodegradowalne poliestry. Przetwórstwo Tworzyw, 4, 351-357. (in Polish)
  • [9] Picotti, F., Fabbian, M., Gianni, R., Sechi, A., Stucchi, L., & Bosco, M. (2012). Hyaluronic acid lipoate: Synthesis and physicochemical properties. Carbohydrate Polymers, 93(1), 273-278. https://doi.org/10.1016/j.carbpol.2012.04.009
  • [10] Brończyk, K., Adamski, M., Dąbrowska A., Konieczka A. & Dąbrowski A. (2023). Two approaches (GC-ECD and electrochemical sensors signals processing) to the determination of carbonyl compounds as markers of air pollution. In Proceedings of the 2023 Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA), 102-107. https://doi.org/10.23919/spa59660.2023.10274453
  • [11] Brończyk, K., Dąbrowska, A., & Majcher, M. (2023). Carbonyl compounds as contaminants migrating from the ecological vessels to food. Food Packaging and Shelf Life, 39, 101139. https://doi.org/10.1016/j.fpsl.2023.101139
  • [12] Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy, Karta charakterystyki formaldehydu, https://www.ciop.pl/CIOPPortalWAR/appmanager/ciop/pl?_nfpb=true&_pageL-bel=P27600224401410431343241&id_czynn_chem=255 (accessed: 05.04.2024) (in Polish)
  • [13] Kukkar, D., Vellingiri, K., Kaur, R., Bhardwaj, S.K., Deep, A., & Kim, K. (2018). Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Research, 12(2), 225-246. https://doi.org/10.1007/s12274-018-2207-5
  • [14] Lewis, A.C., Lee, J.D., Edwards, P.M., Shaw, M.D., Evans, M.J., Moller, S.J., Smith, K.R., Buckley, J.W., Ellis, M., Gillot, S.R., & White, A. (2015). Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discussions, 189, 85-103. https://doi.org/10.1039/c5fd00201j
  • [15] Lewis, A., & Edwards, P. (2016). Validate personal air-pollution sensors. Nature, 535(7610), 29-31. https://doi.org/10.1038/535029a
  • [16] Cross, E.S., Williams, L.R., Lewis, D.K., Magoon, G.R., Onasch, T.B., Kaminsky, M.L., Worsnop, D.R., & Jayne, J.T. (2017). Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575-3588. https://doi.org/10.5194/amt-10-3575-2017
  • [17] Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., & Buckley, K. (2016). Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmospheric Measurement Techniques, 9(11), 5281-5292. https://doi.org/10.5194/amt-9-5281-2016
  • [18] Hagan, D.H., Isaacman-VanWertz, G., Franklin, J.P., Wallace, L.M.M., Kocar, B.D., Heald, C.L., & Kroll, J.H. (2018). Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. Atmospheric Measurement Techniques, 11(1), 315-328. https://doi.org/10.5194/amt-11-315-2018
  • [19] Tianliang, F., Xingchuang, X., & Shangzhong, J. (2023). The development of a meta-learning calibration network for low-cost sensors across domains. Metrology and Measurement Systems, 617-635. https://doi.org/10.24425/mms.2023.147957
  • [20] Chludziński, T., & Kwiatkowski, A. (2020). Exhaled breath analysis by resistive gas sensors. Metrology and Measurement Systems, 81-89. https://doi.org/10.24425/mms.2020.131718
  • [21] Babaelahi, M., & Sadri, S. (2021). Analysis, evaluation, and optimization of bio-medical thermo-resistive micro-calorimetric flow sensor using an analytical approach. Metrology and Measurement Systems, 109-125. https://doi.org/10.24425/mms.2022.138545
  • [22] Brończyk, K., Adamski, M., Dąbrowska, A., Konieczka, A., & Dąbrowski, A. (2024). Accuracy and cross-sensitivity analysis of the PMS5003 formaldehyde sensor. Proceedings of the SPA 2024 Signal Processing: Algorithms, Architectures, Arrangements, and Applications, Poznan, 25th-27th September 2024/IEEE, 2023, 200-2004. https://doi.org/10.23919/SPA61993.2024.10715610
  • [23] DFRobot. (n.d.). Gravity: Formaldehyde (HCHO) Sensor. https://www.dfrobot.com/product-1574.html
  • [24] Sensirion. (2020, May). Datasheet SGP30. Indoor Air Quality Sensor for TVOC and CO2eq Measurements. https://sensirion.com/media/documents/984E0DD5/61644B8B/Sensirion_Gas_Sensors_Datasheet_SGP30.pdf
  • [25] Abe, Y., Kobayashi, N., Yamaguchi, M., Mutsuga, M., Ozaki, A., Kishi, E., & Sato, K. (2021). Determination of formaldehyde and acetaldehyde levels in poly(ethylene terephthalate) (PET) bottled mineral water using a simple and rapid analytical method. Food Chemistry, 344, Article 128708. https://doi.org/10.1016/j.foodchem.2020.128708
  • [26] Cardozo, I.M.M., Anjos, J.P.D., Da Rocha, F.O.C., & De Andrade, J.B. (2021). Exploratory analysis of the presence of 14 carbonyl compounds in bottled mineral water in polyethylene terephthalate (PET) containers. Food Chemistry, 365, 130475. https://doi.org/10.1016/j.foodchem.2021.130475
  • [27] Dehghani, M.H., Farhang, M., & Zarei, A. (2018). Investigation of carbonyl compounds (acetaldehyde and formaldehyde) in bottled waters in Iranian markets. International Food Research Journal, 25, 876-879. http://www.ifrj.upm.edu.my/25(02)2018/(59).pdf
  • [28] Ubeda, S., Aznar, M., & Nerín, C. (2019). Determination of volatile compounds and their sensory impact in a biopolymer based on polylactic acid (PLA) and polyester. Food Chemistry, 294, 171-178. https://doi.org/10.1016/j.foodchem.2019.05.069
  • [29] Hopfer, H., Haar, N., Stockreiter, W., Sauer, C., & Leitner, E. (2011). Combining different analytical approaches to identify odor formation mechanisms in polyethylene and polypropylene. Analytical and Bioanalytical Chemistry, 402(2), 903-919. https://doi.org/10.1007/s00216-011-5463-8
  • [30] Paiva, R., Wrona, M., Nerín, C., Veroneze, I.B., Gavril, G., & Cruz, S.A. (2021). Importance of profile of volatile and off-odors compounds from different recycled polypropylene used for food applications. Food Chemistry, 350, 129250. https://doi.org/10.1016/j.foodchem.2021.129250
  • [31] Zeng, Y., Jin, L., Zhu, L., Wu, Y., Luo, S., Shang, G., Wang, Z., Liu, G., & Hu, C. (2023). Physical characterization and volatile organic compound monitoring of recycled polyethylene terephthalate under mechanical recycling. Food Science, 44(24), 306-315. https://doi.org/10.7506/spkx1002-6630-20221011-100
Uwagi
The research was financed by the Research Grant 0211/SBAD/0224.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb77ecf2-705e-4c47-9f1a-93d26139e1ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.