PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal comfort assessment in the modern passenger car under actual operational conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
People’s ever-increasing needs encourage designers of various vehicles to search for solutions that will provide the most comfortable internal environment conditions. Currently, partly due to the COVID-19 threat, many people use their individual cars to travel to work, college, shops, trips, and holidays. Proper internal air parameters that need to be maintained in vehicles are critical in the sum-mer. The article discusses the thermal comfort of four passengers of a modern car produced in 2017to verify if contemporary production technology can successfully meet the thermal needs of people under actual conditions in the Polish climate. For this purpose, five temperature values were tested:20oC, 22oC, 24oC, 26oC, and 28oC for the car located in the shade and sun. In addition, the Testo 400meter was used to control and measure the internal parameters, and questionnaires were used to find out about the thermal impressions of the respondents. The research was carried out in July when the air temperature in Poland was high
Rocznik
Strony
140--146
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Faculty of Environmental Geomatic and Energy Engineering, Kielce University of Technology, 25-314 Kielce
  • Faculty of Environmental Geomatic and Energy Engineering, Kielce University of Technology, 25-314 Kielce
Bibliografia
  • 1. Amanowicz, Ł., Wojtkowiak, J., 2021. Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe. Energies 14, 8217, DOI: 10.3390/en14248217
  • 2. Bielski, A., 2021. Mixing effects in the river downstream from pollution discharge point. Technical Transactions 118, art. e2021004, DOI: 10.37705/TechTrans/e2021004
  • 3. Cigarini, F., Fay, T-A., Artemenko, N., Göhlich, D., 2021. Modeling and Experimental Investigation of Thermal Comfort and Energy Consumption in a Battery Electric Bus. Word Electric Vehicle Journal, 12(1), art. 7, DOI: 10.3390/WEVJ12010007
  • 4. Czyczuła, W., Rochel, M., 2021. Operational problems of tramway infrastructure in sharp curves. Technical Transactions 118, art. e2021015. DOI: 10.37705/TechTrans/e2021015
  • 5. Dabek, L., Kapjor, A., Orman, L.J., 2019. Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces. Mechanics&Industry, 20(7), art. 701, DOI: 10.1051/meca/2019068
  • 6. Danca, P.A., Nastase, I., Croitoru, C., Bode, F., Sandu, M., 2020. Thermal comfort evaluation inside a car parked under sun and shadow using a thermal manikin. IOP Conference Series: Earth and Environmental Science, 664(1), art. 012064, DOI: 10.1088/1755-1315/664/1/012064
  • 7. Danca, P., Vartires, A., Dogeanu, A., 2016. An overview of current methods for thermal comfort assessment in vehicle cabin. Energy Procedia, 85, 162-169, DOI: 10.1016/j.egypro.2015.12.322
  • 8. Danielewski, H, Skrzypczyk A, Zowczak W, Gontarski D, Płonecki L, Wiśniewski H, Soboń D, Kalinowski A, Bracha G, Borkowski K., 2021. Numerical analysis of laser-welded flange pipe joints in lap and fillet configurations. Technical Transactions 118, art. e2021030. DOI: 10.37705/TechTrans/e2021030
  • 9. Djoković, J.M., Nikolić, R.R., Bujnak, J., Hadzima, B., Pastorek, F., Dwornicka, R., Ulewicz, R., 2022. Selection of the Optimal Window Type and Orientation for the Two Cities in Serbia and One in Slovakia. Energies, 15, 323. DOI: 10.3390/en15010323
  • 10. Feng, J., Yan, T., Zhao, K., 2021. Thermal Comfort Analysis of Passenger Compartment of a Hybrid Vehicle, Journal of Physics: Conference Series, 1986, art. 012057, DOI: 10.1088/1742-6596/1986/1/012057
  • 11. Gazda, A., Pacana, A., Malindzak, D., 2013. Study on improving the quality of stretch film by Taguchi method. Przemysl Chemiczny, 92(6), 980-982.
  • 12. Giaconia, C., Orioli, A., Di Gangi, A., 2015. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights. Applied Ergo-nomics, 48, 202-213, DOI: 10.1016/j.apergo.2014.12.003
  • 13. Khatoon, S., Kim, M., H., 2020. Thermal Comfort in the Passenger Compartment Using a 3-D Numerical Analysis and Comparison with Fanger’s Comfort Models. Energies, 13(3), art. 690, DOI: 10.3390/en13030690
  • 14. Kosiński P., Skotnicka-Siepsiak A., 2022. Possibilities of Adapting the University Lecture Room to the Green University Standard in Terms of Thermal Comfort and Ventilation Accuracy. Energies, 15, 3735, DOI: 10.3390/en15103735
  • 15. Krawczyk, N., Dębska, L., Białek, A., 2021. Thermal Comfort in the Modern Car-Experimental Analysis and Verification of the Fanger Model. International Review of Mechanical Engineering, 15 (12), 609-614, DOI: 10.15866/ireme.v15i12.21473
  • 16. Kubecki A, Śliwiński C, Śliwiński J, Lubach I, Bogdan L, Maliszewski W., 2021. Assessment of the technical condition of mines with mechanical fuses. Technical Transactions 118, art. e2021025, DOI: 10.37705/Tech-Trans/e2021025
  • 17. Kurp, P., Danielewski, H., 2022. Metal expansion joints manufacturing by a mechanically assisted laser forming hybrid method – concept. Technical Transactions 119, art. e2022008, DOI: 10.37705/TechTrans/e2022008
  • 18. Majewski, G., Orman, L.J., Telejko, M., Radek, N., Pietraszek, J., Dudek, A., 2020. Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment. Energies, 13(8), art. 1973, DOI:10.3390/en13081973
  • 19. Maltsevich, I., 2021. Technological structures in construction during the implementation of the National Strategy for Sustainable Development – 2035. Construction of Optimized Energy Potential, 10(2), 61-68, DOI: 10.17512/bozpe.2021.2.08
  • 20. Miletic, I., Ilic, A., Nikolic, R.R., Ulewicz, R., Ivanovic, L., Sczygiol, N., 2020. Analysis of selected properties of welded joints of the HSLA Steels. Materials, 13(6), art. 1301, DOI: 10.3390/ma13061301
  • 21. Orman, Ł,.J., 2014a. Boiling heat transfer on single phosphor bronze and copper mesh microstructures. EPJ Web of Conf., 67, art. 02087, DOI: 10.1051/epjconf/20146702087
  • 22. Orman, Ł.J., 2014b. Boiling heat transfer on meshed surfaces of different aperture. AIP Conference Proc., 1608, 169-172, DOI: 10.1063/1.4892728
  • 23. Orman, L.J., Radek, N., Pietraszek, J., Szczepaniak, M., 2020. Analysis of Enhanced Pool Boiling Heat Transfer on Laser-Textured Surfaces. Energies, 13(11), art. 2700, DOI: 10.3390/en13112700
  • 24. Pala, U., Oz, H., R., 2015. An investigation of thermal comfort inside a bus during heating period within a climatic chamber. Applied Ergonomics, 48, 164-176, DOI: 10.1016/j.apergo.2014.11.014
  • 25. Petrash, V., Khomenko, A., Polomannyy, O., Visotska, M., 2021. Integration of ground and ventilation air energy for heating buildings. Construction of Optimized Energy Potential, 10(1), 7-17, DOI: 10.17512/bozpe.2021.1.01
  • 26. Pietraszek, J., 2003. Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, vol 19. Physica, Heidelberg, 250-255, DOI:10.1007/978-3-7908-1902-1_35
  • 27. Pietraszek, J., Gadek-Moszczak, A., Torunski, T., 2014. Modeling of Errors Counting System for PCB Soldered in the Wave Soldering Technology. Advanced Materials Research, 874, 139-143, DOI: 10.4028/www.scientific.net/AMR.874.139
  • 28. Pietraszek, J., Szczotok, A., Radek, N., 2017. The fixed-effects analysis of the relation between SDAS and carbides for the airfoil blade traces. Archives of Metallurgy and Materials, 62(1), 235-239, DOI: 10.1515/amm-2017-0035
  • 29. Radek, N., Dwornicka, R., 2020. Fire properties of intumescent coating systems for the rolling stock. Communications – Scientific Letters of the University of Žilina 22, 90-96, DOI: 10.26552/com.C.2020.4.90-96
  • 30. Radek, N., Szczotok, A., Gadek-Moszczak, A., Dwornicka, R., Broncek, J., Pietraszek, J., 2018. The impact of laser processing parameters on the properties of electro-spark deposited coatings. Archives of Metallurgy and Materials, 63, 809-816, DOI: 10.24425/122407
  • 31. Radzajewski P., 2021. Calculation of brake-force distribution on three-axle agricultural trailers using simulation methods. Technical Transactions 118, art. e2021029, DOI: 10.37705/TechTrans/e2021029
  • 32. Ravindra, K., Agarwal, N., Mor, S., 2021. Assessment of thermal comfort parameters in various car models and mitigation strategies for extreme heat-health risks in the tropical climate. Journal of Environmental Management, 267, art. 110655, DOI: 10.1016/j.jenvman.2020.110655
  • 33. Regulski, P, Abramek, K., 2022. The application of neural networks for the life-cycle analysis of road and rail rolling stock during the operational phase. Technical Transactions 119, art. e2022002. DOI: 10.37705/Tech-Trans/e2022002
  • 34. Rolle, A., Schmandt, B., Guinet, C., Bengler, K., 2021. Assessment of Thermal Comfort in Different Vehicle-Classes – The Suitability of ISO 14505-2:2006-12, LNNS, 221, 806-813, DOI: 10.1007/978-3-030-74608-7_99
  • 35. Saleel, C.,A., Mujeebu, M.,A., Algarni, C., 2019. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. Journal of Thermal Analysis and Calorimetry, 136, 629-636, DOI: 10.1007/s10973-018-7676-y
  • 36. Simion, M., Socaciu, L., Unguresan, P., 2016. Factors which Influence the Thermal Comfort Inside of Vehicles. Energy Procedia, 85, 470-480, DOI: 10.1016/j.egypro.2015.12.229
  • 37. Siwiec, D., Dwornicka, R., Pacana, A., 2020. Improving the non-destructive test by initiating the quality management techniques on an example of the turbine nozzle outlet. Materials Research Proceedings, 17, 16-22, DOI: 10.21741/9781644901038-3
  • 38. Szczotok, A., Chmiela, B., 2014. Effect of heat treatment on chemical segregation in CMSX-4 nickel-base superalloy. Journal of Materials Engineering and Performance, 23(8), 2739-2747, DOI: 10.1007/s11665-013-0843-1
  • 39. Szczotok, A., Pietraszek, J., Radek, N., 2017. Metallographic study and repeatability analysis of gamma ' phase precipitates in cored, thin-walled castings made from IN713C superalloy. Archives of Metallurgy and Materials, 62(2), 595-601, DOI: 10.1515/amm-2017-0088
  • 40. Szczotok, A., Radek, N., Dwornicka, R., 2018. Effect of the induction hardening on microstructures of the selected steels. METAL 2018 27th Int. Conf. Metallurgy and Materials, Ostrava, Tanger, 1264-1269.
  • 41. Ujma, A., Jura, J., 2021. Thermal emissivity of tent fabric and its influence on the thermal insulation of tent walls. Construction of Optimized Energy Potential, 10(2), 15-22, DOI: 10.17512/bozpe.2021.2.02
  • 42. Ulewicz, R., Mazur, M., Knop, K., Dwornicka, R., 2020. Logistic controlling processes and quality issues in a cast iron foundry. Materials Research Proceedings, 17, 65-71, DOI:10.21741/9781644901038-10
  • 43. Vink, P., Bazley, C., Kamp, I., Blok, M., 2021. Possibilities to improve the aircraft interior comfort experience. Applied Ergonomics, 43, 354-359, DOI: 10.1016/j.apergo.2011.06.011
  • 44. Wójcicka, K., 2021. The efficiency of municipal sewage treatment plants inspiration for water recovery. Technical Transactions 118, art. e2021023, DOI: 10.37705/TechTrans/e2021023
  • 45. Wysoczański, A, Kamyk Z, Yvinec Y., 2021. Analysis of the possibility of employing 3D printing technology in crisis situations. Technical Transactions 118, art. e2021008, DOI: 10.37705/TechTrans/e2021008
  • 46. Zhou, X., Lai, D., Chen, Q., 2019. Experimental investigation of thermal comfort in a passenger car under driving conditions. Building and Environment, 149, 109-119, DOI: 10.1016/j.buildenv.2018.12.022
  • 47. Zhou, X., Lai, D., Chen, Q., 2020 Thermal sensation model for driver in a passenger car with changing solar radiation. Building & Environment, 183, art. 107219, DOI: 10.1016/j.buildenv.2020.107219
  • 48. Zhou, X., Liu, Y., Luo, M., Zheng, S.,Yang, R., Zhang, X., 2022. Overall and thermal comfort under different temperature. noise, and vibration exposures. Indoor Air, 32, art. e12915, DOI: 10.1111/ina.12915
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb771a16-7f9e-46a1-8594-8934b43b0c61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.