PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Vanadium Microaddition on the Strength of Low-Carbon Cast Steel at Elevated Temperatures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of vanadium microaddition on the strength of low-carbon cast steel containing 0.19% C used, among others, for castings of slag ladles was discussed. The tested cast steel was melted under laboratory conditions in a 30 kg capacity induction furnace. Mechanical tests were carried out at 700, 800 and 900°C using an Instron 5566 machine equipped with a heating oven of ± 2°C stability. Non-standard 8- fold samples with a measuring length of 26 mm and a diameter of 3 mm were used for the tests. It has been shown that, compared to cast steel without vanadium microaddition, the introduction of vanadium in an amount of 0.12% to unalloyed, low carbon cast steel had a beneficial effect on the microstructure and properties of this steel not only at ambient temperature but also at elevated temperatures when it promoted an increase in UTS and YS. The highest strength values were obtained in the tested cast steel at 700°C with UTS and YS reaching the values of 193 MPa and 187.7 MPa, respectively, against 125 MPa and 82.8 MPa, respectively, obtained without the addition of vanadium. It was also found that with increasing test temperature, the values of UTS and YS were decreasing. The lowest values of UTS and YS obtained at 900°C were 72 MPa and 59.5 MPa, respectively, against 69 MPa and 32.5 MPa, respectively, obtained without the addition of vanadium.
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Collective work edited by Sobczak J.J. (2013). Contemporary Molding. Foundry's guide. Kraków: STOP. ISBN: 878-83-904306-9-0.
  • [2] Głownia, J. (2017). Metallurgy and technology of steel castings. Bentham Books. ISBN: 978-1-68108-571-5.
  • [3] Kalandyk, B., Sierant, Z. & Sobula, S. (2009). Improvement of the microstructure, yield stress and impact toughness of medium carbon steel by vanadium additions. Przegląd Odlewnictwa (Foundry Journal of the Polish Foundrymen’ts Association). 58(3), 108-113.
  • [4] Muszka, K., Majta, J. & Bienias, Ł. (2006). Effect of grain refinement on mechanical properties of microalloyed steels. Metallurgy and Foundry Engineering. 32(2), 87-97.
  • [5] Głownia, J. & Kalandyk, B. (2008). Effect of precipitation strengthening in low alloyed Mn-Ni cast steels. Journal of Materials Processing Technology. 207, 147-153.
  • [6] Rassizadehghani, J., Najafi, H., Emamy, M. & Eslami-Saeen, G. (2007). Mechanical properties of V-, Nb-, and Ti-bearing as-cast microalloyed steels. Journal of Materials Science and Technology. 23, 779-784.
  • [7] Gao, W.L., Leng, Y., Fu, D.F. & Teng, J. (2016). Effects of niobum and heat treatment on microstructure and mechanical properties of low carbon cast steels. Materials and Design. 114-123. DOI: 10.1016/j.matdes.2016.05.057.
  • [8] Chokkalingam, B., Raja, V., Anburaj, J., Immanual, R. & Dhineshlumar, M. (2017). Optymization of microalloying elements for mechanical properties in normalized cast steel using Taguchi Technique. Archives of Foundry Engineering. 17(2), 171-177. DOI: 10.1515/afe-2017-0070.
  • [9] Zhao, J., Lee, J.H., Kim, Y.W., Jiang, Z. & Soo Lee, Ch. (2013). Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment. Materials Science & Engineering A. 559, 427-435.
  • [10] http://www.dhf-china.com/cast-steel/slag-pot.html. Retrieved September 19, 2019.
  • [11] http://internationalsteelproducts.com.au/wp-content/uploads /2014/01/Ladles-Brochure.pdf. Retrieved September 19, 2019.
  • [12] Malkiewicz, T. (1976). Metallurgy of iron alloys. Warszawa: PWN. (in Polish).
  • [13] Gladman, T. (2002). The physical of metallurgy of microalloyed steel. London: Cambridge. Institute of Materials. ISBN 0-901716-81-2.
  • [14] Pacyna, J., Dąbrowski, R. (2003). Influence of V on transformations during tempering of steels with low content of other elements. 12th Intern. Scientific Conference „Achievements in Mechanical and Materials Engineering”. Gliwice-Cracow-Zakopane, Poland, (pp.713-718). ISBN - 83-914458-9-5COBISS.SI-ID – 6888987. (in Polish).
  • [15] Saxena, A., Kumar, V. & Datta, R. (2011). Influence of cooling rate on transformation behaviour of 0.15% V microalloyed steel. Journal of Materials Engineering and Performance. (20)8, 1481-1483. DOI: 10. 1007/s11665-010-9780-4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb7568e8-7c24-4e98-8c78-fa4a484e4099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.