PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of covariance parameters for GNSS/leveling geoid data by Leave-One-Out validation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes the estimation of covariance parameters in Least Squares Collocation (LSC) by Leave-One-Out (LOO) validation, which is often considered as a kind of cross validation (CV). Two examples of GNSS/leveling (GNSS/lev) geoid data, characterized by different area extent and resolution are applied in the numerical test. A special attention is focused on the noise, which is not correlated in this case. The noise variance is set to be homogeneous for all points. Two parameters in three covariance models are analyzed via LOO, together with a priori noise standard deviation, which is a third parameter. The LOO validation finds individual parameters for different applied functions i.e. different correlation lengths and a priori noise standard deviations. Diverse standard deviations of a priori noise found for individual datasets illustrate a relevance of applying LOO in LSC. Two examples of data representing different spatial resolutions require individual noise covariance matrices to obtain optimal LSC results in terms of RMS in LOO validation. The computation of appropriate a priori noise variance is however difficult via typical covariance function fitting, especially in the case of sparse GNSS/leveling geoid data. Therefore LOO validation may be helpful in describing how the a priori noise parameter may affect LSC result and a posteriori error.
Słowa kluczowe
Rocznik
Tom
Strony
291--307
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Satellite Geodesy and Navigation, University of Warmia and Mazury in Olsztyn
Bibliografia
  • ANDERSEN O.B., KNUDSEN P. 1998. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J. Geophys. Res., 103(C4): 8129–8137.
  • ARABELOS D., TSCHERNING C.C. 2003. Globally covering a-priori regional gravity covariance models. Adv. Geosci., 1: 143–147, DOI:10.5194/adgeo-1-143-2003.
  • ARLOT S., CELISSE A. 2010. A survey of cross-validation procedures for model selection. Stat. Surv., 4: 40–79, DOI: 10.1214/09-SS054.
  • CATALAO J., SEVILLA M.J. 2009. Mapping the geoid for Iberia and the Macaronesian Islands using 430 multi-sensor gravity data and the GRACE geopotential model. J Geod., 48(1): 6–15. DOI:10.1016/j.jog.2009.03.001.
  • DARBEHESHTI N., FEATHERSTONE W.E. 2009. Non-stationary covariance function modelling in 2D least-squares collocation. J Geod., 83(6): 495–508. DOI:10.1007/s00190-008-0267-0
  • DARBEHESHTI N., FEATHERSTONE W.E. 2010. Tuning a gravimetric quasigeoid to GPSlevelling by non-stationary least-squares collocation. J. Geod., 84 (7): 419–431.
  • DAWIDOWICZ K. 2012. GNSS satellite levelling using the ASG-EUPOS system services, Techn. Sc., 15(1): 35–48.
  • DENKER H. 1998. Evaluation and Improvement of the EGG97 Quasigeoid Model for Europe by GPS and Leveling Data. In: Proceed. Continental Workshop on the Geoid in Europe. Eds. M. Vermeer, J. Adam. Budapest, Hungary, March 10–14, Reports of the Finnish Geodetic Institute, 98(4): 53–61, Masala.
  • EL-FIKY G.S., KATO T., FUJII Y. 1997. Distribution of vertical crustal movement rates in the Tohoku district, Japan, predicted by least-squares collocation. J. Geod., 71(7): 432–442.
  • FOTOPOULOS G., KOTSAKIS C., SIDERIS M.G. 2003. How accurately can we determine orthometric height differences from GPS and geoid data? J. Surv. Eng., 129: 1–10.
  • GODAH W., KRYŃSKI J. 2011. Validation of GOCE gravity field models over Poland using the EGM2008 and GPS/levelling data. Geoinformation Issues, 3, 1(3): 5–17.
  • GREBENITCHARSKY R.S., RANGELOVA E.V., SIDERIS M.G. 2005. Transformation between gravimetric and GPS/levelling-derived geoids using additional gravity information. J. Geodyn., 39(5): 527–544.
  • HOFMANN-WELLENHOF B., MORITZ H. 2005. Physical Geodesy. Springer, New York.
  • ILIFFE J.C., ZIEBART M., CROSS P.A., FORSBERG R., STRYKOWSKI G., TSCHERNING C.C. 2003. OGSM02: A new model for converting GPS-derived heights to local height datums in Great Britain and Ireland. Surv. Rev., 37(290): 276–293.
  • JEKELI C., GARCIA R. 2002. Local geoid determination with in situ geopotential data obtained from satellite-to-satellite tracking data. In: Gravity, Geoid and Geodynamics 2000. Ed. M.G. Sideris. Springer, Berlin, p. 123–128.
  • KAVZOGLU T., SAKA M.H. 2005. Modeling local GPS/levelling geoid undulations using artificial neural networks. J. Geod., 78: 520–527. DOI 10.1007/s00190-004-0420-3.
  • KITANIDIS P.K. 1983. Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resour. Res., 19(4): 909–921.
  • KOHAVI R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence. Montreal, Canada, 2: 1137–1143.
  • KOWALCZYK K., RAPIŃSKI J., MRÓZ M. 2010. Analysis of vertical movements modelling through various interpolation techniques. Acta Geodyn. Geomater., 7, 4(160): 1–11.
  • KUSCHE J., KLEES R. 2002. Regularization of gravity field estimation from satellite gravity gradients. J Geod 76: 359–368.
  • ŁYSZKOWICZ A. 2010a. Refined astrogravimetric geoid in Poland. Part I. Geomatics and Environmental Engineering, 4(1): 57–67.
  • ŁYSZKOWICZ A. 2010b. Refined astrogravimetric geoid in Poland. Part II. Geomatics and Environmental Engineering, 4(2): 63–73.
  • ŁYSZKOWICZ A. 2009. Assessment of accuracy of EGM08 model over the area of Poland. Technical Sciences, 12: 118-134, DOI 10.2478/v10022-009-0011-x.
  • MARCHENKO A., TARTACHYNSKA Z., YAKIMOVICH A., ZABLOTSKYJ F. 2003. Gravity anomalies and geoid heights derived from ERS-1,ERS-2, and Topex/Poseidon altimetry in the Antarctic peninsula area. Proceedings of the 5th International Antarctic Geodesy Symposium AGS’03, September 15-17, Lviv, Ukraine, SCAR Report No. 23, http://www.scar.org/publications/reports/23/
  • MORITZ H. 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe.
  • OSADA E., KRYŃSKI J., OWCZAREK M. 2005. A robust method of quasigeoid modelling in Poland based on GPS/levelling data with support of gravity data. Geodesy and Cartography, 54(3): 99–117.
  • PAVLIS N.K., HOLMES S.A., KENYON S.C., FACTOR J.F. 2012. The development and evaluation of Earth Gravitational Model (EGM2008), J. Geophys. Res., 117, B04406, DOI:10.1029/2011JB008916.
  • RAO C.R., TOUTENBURG H. 1995. Linear Models: Least Squares and Alternatives. New York: Springer-Verlag, pp. 352.
  • RAPP R.H. 1973. Geoid information by wavelength. Bull. Geod., 110(1): 405–411.
  • SANSÓ F., VENUTI G., TSCHERNING C.C. 1999. A theorem of insensitivity of the collocation solution to variations of the metric of the interpolation space. In: Geodesy Beyond 2000. Ed. K.P. Schwarz. The Challenges of the First Decade, International Association of Geodesy Symposia, 121: 233–240, Springer, Berlin.
  • SMITH D.A., MILBERT D.G. 1999. The GEOID96 high-resolution geoid height model for the United States. J. Geod., 73(5): 219–236.
  • STRYKOWSKI G., FORSBERG R. 1998. Operational merging of satellite airborne and surface gravity data by draping techniques. In: Geodesy on the Move. Eds. R. Forsberg, M. Feissl, R. Dietrich. Springer, Berlin, p. 207–212.
  • TROJANOWICZ M. 2012. Local modelling of quasigeoid heights with the use of the gravity inverse method – case study for the area of Poland. Acta Geodyn. Geomater., 9, 1(165): 5–18.
  • YOU R.J., HWANG H.W. 2006. Coordinate transformation between two geodetic datums of Taiwan by least-squares collocation. J. Surv. Eng.-ASCE, 132(2): 64–70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb731cae-d8be-4f57-9410-4002bc7ceb4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.