PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological synthesis and characterization of titanium dioxide nanoparticle from Cynodon dactylon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: There are several advantages of using a biological technique to produce nanoparticles versus a chemical method. The primary goal of this work is to characterize and biologically synthesize titanium dioxide (TiO2) nanoparticles from Cynodon dactylon. The characterization has experimented with UV-Vis Spectroscopy, EDX analysis, SEM, XRD, and FTIR. Design/methodology/approach: The suggested study uses a simple biological technique to accomplish the systematic biological synthesis of TiO2 nanoparticles utilizing Cynodon dactylon plant extract and titanium tetra isopropoxide as a precursor. UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) are used to confirm the fabrication of the TiO2 nanoparticles. The plant extract as well as titanium-based nanoparticles of the herb, Cynodon dactylon will be tested for its antibacterial activity against human pathogens. This eco-friendly technique for nanoparticle synthesis is straightforward and adaptable to major commercial manufacturing and technological applications. Findings: Cynodon dactylon biosynthesis of TiO2 nanoparticles is efficient, nutrition dependent, does not employ hazardous compounds, and happens at neutral pH levels. The antibacterial study results show that TiO2 nanoparticles synthesized using Cynodon dactylon have good antibacterial properties. TiO2 nanoparticle method of action against bacteria is unknown. This is an alternative process for synthesising TiO2 nanoparticles, apart from other chemical protocols, since this is quick and non-toxic. The antimicrobial property of biologically synthesized TiO2 nanoparticles against Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii was tested at four different doses of 15 μl/mg, 25 μl/mg, 50 μl/mg, and 75 μl/mg. The present results revealed the 75 μl/mg concentration got the highest zone of inhibition (15, 13, 15 mm) for Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli. Research limitations/implications: Many nanoparticles smaller than 100 nm are firmly agglomerated with each other in the study. TiO2 nanoparticles absorb in the UV region of 200 to 400 nm. XRD measurements confirmed the presence of TiO2 nanoparticles in the biologically produced sample. In our work, EDX was used to confirm the existence of Ti after its synthesis by Cynodon dactylon. Practical implications: The biosynthesized TiO2 nanoparticles utilizing Cynodon dactylon plant extracts exhibit a good potent antibacterial activity. The proposed results showed that the TiO2 nanoparticles are well suited for biomedical applications. Originality/value: The suggested research identifies several eco-friendly, biological, and cost-effective procedures for manufacturing nano-coated herbal products. The agar well diffusion technique was used to assess antibacterial activities toward test pathogens such as Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
  • Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
  • Department of English, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
autor
  • Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
Bibliografia
  • [1] R.J. Aitken, K.S. Creely, C.L. Tran, Nanoparticles: An occupational hygiene review, Research Report 274, HSE Books, Suffolk, 2004.
  • [2] V.M. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, M.R. Regan, Emerging use of nanoparticles in diagnosis and treatment of breast cancer, The Lancet: Oncology 7/8 (2006) 657-667. DOI: https://doi.org/10.1016/S1470-2045(06)70793-8
  • [3] J.L. Elechiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1, Journal of Nanobiotechnology 3/6 (2005) 6. DOI: https://doi.org/10.1186/1477-3155-3-6
  • [4] S. Nie, Y. Xing, G.J. Kim, J.W. Simons, Nanotechnology applications in Cancer, Annual Review of Biomedical Engineering 9 (2007) 257-288. DOI: https://doi.org/10.1146/annurev.bioeng.9.060906.152025
  • [5] J.M. Nam, C.S. Thaxton, C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science 301/5641 (2003) 1884-1886. DOI: https://doi.org/10.1126/science.1088755
  • [6] E.L. Mayes, S. Mann, Mineralization in Nano-structured Biocompartments: Biomimetic Ferritins for High-Density Data Storage, in: C.M. Niemeyer, C.A. Mirkin, Nanobiotechnology: Concepts, Applications and Perspectives, WILEY-VCH Verlag GmbH & Co.KaA, Weinheim, 2004, 278-287. DOI: https://doi.org/10.1002/3527602453.ch18
  • [7] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society 115/19 (1993) 8706-8715. DOI: https://doi.org/10.1021/ja00072a025
  • [8] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Bio reduction of AlCl 4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed, Angewandte Chemie - International Edition 40/19 (2001) 3585-3588. DOI: https://doi.org/10.1002/1521-3773(20011001)40:19%3C3585::AID-ANIE3585%3E3.0.CO;2-K
  • [9] T. Kyprianidou-Leodidou, W. Caseri, U.W. Suter, Size variation of PbS particles in high-refractive index nanocomposites, Journal of Physical Chemistry 98 (1994) 8992-8997. DOI: https://doi.org/10.1021/j100087a029
  • [10] C. Wang, J.Y. Ying, Sol gel synthesis and hydrothermal processing of anatase and rutile Titania nanocrystals Chemistry of Materials 11/11 (1999) 3113-3120. DOI: https://doi.org/10.1021/cm990180f
  • [11] N.G. Robert, J.S. Wendelin, Gas phase synthesis of fcc-cobalt nanoparticles, Journal of Materials Chemistry 16/19 (2006) 1825-1830. DOI: https://doi.org/10.1039/B601013J
  • [12] Sunstrom, W.R. Moser, B. Marshik-Guerts, General route to nanocrystallite oxides by hydrodynamic cavitation, Chemistry of Materials 8/8 (1996) 2061-2067. DOI: https://doi.org/10.1021/cm950609c
  • [13] D.L. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructural materials, Chemistry of Materials 8/8 (1996) 1770-1783. DOI: https://doi.org/10.1021/cm960077f
  • [14] T.L. Riddin, M. Gericke, C.G. Whiteley, Analysis of the inter- and extracellular formation of Platinum nanoparticles by Fusarium oxysporumf.sp. lycopersici using surface response methodology, Nanotechnology 17/14 (2006) 3482. DOI: https://doi.org/10.1088/0957-4484/17/14/021
  • [15] K.B. Narayana, N. Sakthivel, Biological synthesis of metal nanoparticles by microbes, Advances in Colloid and Interface Science 156/1-2 (2010) 1-13. DOI: https://doi.org/10.1016/j.cis.2010.02.001
  • [16] R. Vaidyanathan, S. Gopalram, K. Kalishwaralal, V. Deepak, S.R. Pandian, S. Gurunathan, Enhanced silver nanoparticles synthesis by optimization of nitrate reductase activity, Colloids and Surfaces B: Biointerfaces 75/1 (2010) 335-341. DOI: https://doi.org/10.1016/j.colsurfb.2009.09.006
  • [17] N. Galvez, P. Sanchez, J.M. Dominguez, A. Soriano, M. Clemente, Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles, Journal of Materials Chemistry 16/26 (2006) 2757-2761. DOI: https://doi.org/10.1039/B604860A
  • [18] P. Boffetta, V. Gaborieau, L. Nadon, M.E. Parent, E. Weiderpass, J. Siemiatycki, Exposure to titanium dioxide and risk of lung cancer in a population-based study from Montreal, Scandinavian Journal of Work, Environment and Health 27/4 (2001) 227-232. DOI: https://doi.org/10.5271/sjweh.609
  • [19] R. Ahmad, M. Sardar, TiO2 nanoparticles as an antibacterial agents against E.coli, International Journal of Innovative Research in Science, Engineering and Technology 2/8 (2013) 3569-3574.
  • [20] M. Haghi, M. Hekmatafshar, M.B. Janipour, S.S. Gholizadeh, M.K. Faraz, F. Sayyadifar, M. Ghaedi, Antibacterial effect of TiO 2 nanoparticles on pathogenic strain of E.coli, International Journal of Advanced Biotechnology and Research 3/3 (2012) 621-624.
  • [21] A.O. Gamer, E. Leibold, B. van Ravenzwaay, The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin, Toxicology in Vitro 20/3 (2006) 301-307. DOI: https://doi.org/10.1016/j.tiv.2005.08.008
  • [22] P. Kannan, S.A. John, Synthesis of mercaptothiadiazole-functionalized gold substrates, Nanotechnology 19/8 (2008) 085602. DOI: https://doi.org/10.1088/0957-4484/19/8/085602
  • [23] H. Ikigai, M. Toda, S. Okubo, Y. Hara, T. Shimamura, Relationship between the anti-hemolysin activity and the structure of catechins and flavins, Nippon Saikingaku Zasshi 45/6 (1990) 913-919 (in Japanese). DOI: https://doi.org/10.3412/jsb.45.913
  • [24] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: Technological concepts and future applications, Journal of Nanoparticles Research 10 (2008) 507-517. DOI: https://doi.org/10.1007/s11051-007-9275-x
  • [25] N. Gou, H.A. Onnis, A.Z. Gu, Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis, Environmental Science Technology 44/15 (2010) 5964-5970.
  • [26] T. Phenrat, J.E. Song, C.M. Cisneros, D.P. Schoenfelder, R.D. Tilton, G.V. Lowry, Estimating attachment of nano and sub-micrometer particles coated with organic macromolecules in porous media: Development of an empirical model, Environmental Science and Technology 44/12 (2010) 4531-4538. DOI: https://doi.org/10.1021/es903959c
  • [27] M. Toda, S. Okubo, H. Ikigai, T. Shimamura, Antibacterial and anti-haemolysin at activities of tea catechins and their structural relative, Nippon Saikingaku Zasshi 45/2 (1990) 561-566 (in Japanese). DOI: https://doi.org/10.3412/jsb.45.561
  • [28] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology 18/22 (2007) 225103. DOI: https://doi.org/10.1088/0957-4484/18/22/225103
  • [29] C. Malarkodi, K. Chitra, S. Rajeshkumar, G. Gnanajobitha, K. Paulkumar, M. Vanaja, G. Annadurai, Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation, Der Pharmacia Sinica 4/3 (2013) 59-66.
  • [30] A. Maurya, P. Chauhan, A. Mishra, A.K. Pandey, Surface functionalized of TiO2 with plant extracts and their combined antimicrobial activities against E. faecalis and E. coli, Journal of Research Updates in Polymer Science 1/1 (2012) 43-51. DOI: http://dx.doi.org/10.6000/1929-5995.2012.01.01.6
  • [31] E.T. Bekele, E.A. Zereffa, N.S. Gultom, D.-H. Kuo, B.A. Gonfa, F.K. Sabir, Biotemplated Synthesis of Titanium Oxide Nanoparticles in the Presence of Root Extract of Kniphofia schemperi and Its Application for Dye Sensitized Solar Cells, International Journal of Photoenergy 2021 (2021) 6648325. DOI: https://doi.org/10.1155/2021/6648325
  • [32] E.T. Bekele, B.A. Gonfa, O.A. Zelekew, H.H. Belay, F.K. Sabir, Synthesis of Titanium Oxide Nanoparticles Using Root Extract of Kniphofia foliosa as a Template, Characterization, and Its Application on Drug Resistance Bacteria, Journal of Nanomaterials 2020 (2020) 2817037. DOI: https://doi.org/10.1155/2020/2817037
  • [33] M.H. Olana, F.K. Sabir, E.T. Bekele, B.A. Gonfa, Citrus sinensis and Musa acuminata Peel Waste Extract Mediated Synthesis of TiO 2/rGO Nanocomposites for Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation, Bioinorganic Chemistry and Applications 2022 (2022) 5978707. DOI: https://doi.org/10.1155/2022/5978707
  • [34] A. Magryś, A. Olender, D. Tchórzewska, Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics, Archives of Microbiology 203 (2021) 2257-2268. DOI: https://doi.org/10.1007/s00203-021-02248-z
  • [35] P.-W. Su, C.-H. Yang, J.-F. Yang, P.-Y. Su, L.-Y. Chuang, Antibacterial Activities and Antibacterial Mechanism of Polygonum cuspidatum Extracts against Nosocomial Drug-Resistant Pathogens, Molecules 20/6 (2015) 11119-11130. DOI: https://doi.org/10.3390/molecules200611119
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb6a5906-b011-405b-a2b2-1e13c4cf9b28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.