PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sequentially Distributed Coalition Formation Game for Throughput Maximization in C-RANs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cloud radio access network (C-RAN) has been proposed as a solution to reducing the huge cost of network upgrade while providing the spectral and energy efficiency needed for the new generation cellular networks. In order to reduce the interference that occur in C-RAN and maximize throughput, this paper proposes a sequentially distributed coalition formation (SDCF) game in which players, in this case the remote radio heads (RRHs), can sequentially join multiple coalitions to maximize their throughput. Contrary to overlapping coalition formation (OCF) game where players contribute fractions of their limited resources to different coalitions, the SDCF game offers better stability by allowing sequential coalition formation depending on the availability of resources and therefore providing a balance between efficient spectrum use and interference management. An algorithm for the proposed model is developed based on the merge-only method. The performance of the proposed algorithm in terms of stability, complexity and convergence to final coalition structure is also investigated. Simulation results show that the proposed SDCF game did not only maximize the throughput in the C-RAN, but it also shows better performances and larger capabilities to manage interference with increasing number of RRHs compared to existing methods.
Słowa kluczowe
Rocznik
Strony
505--512
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical and Electronics Engineering, University of Lagos, Lagos, Nigeria
autor
  • Computer and Electrical Engineering Department, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
Bibliografia
  • [1] A. Checko, H. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. Berger, and L. Dittmann, “Cloud ran for mobile networks - a technology overview,” IEEE Communications Surveys and Tutorials, vol. 17, no. 1, pp. 405–426, 2015. DOI: 10.1109/COMST.2014.2355255.
  • [2] J. Wu, Z. Zhifeng, H. Yu, and W. Yonggang, “Cloud radio access network (c-ran): A primer,” IEEE Network, vol. 29, pp. 35–41, 2015. DOI: 10.4316/AECE.2014.01001.
  • [3] Y. Luo, K. Yang, Q. Tang, J. Zhang, P. Li, and S. Qiu, “An optimal data service providing framework in cloud radio access network,” EURASIP Journal on Wireless Communications and Networking, vol. 23, no. 1, pp. 1–11, 2016. DOI: 10.1186/s13638-015-0503-2.
  • [4] M. Zorzi, A. Zanella, M. Testolin A De Filippo De Grazia, and M. Zorzi, “Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence,” IEEE Access, vol. 3, pp. 1512–1529, 2015. DOI: 10.1109/ACCESS.2015.2471178.
  • [5] E. Mohamed, “Cloud cooperated heterogeneous cellular networks for delayed offloading using millimeter wave gate,” Intl. Journal of Electronics and Telecommunications, vol. 63, no. 1, pp. 51–64, 2017. DOI: 10.1515/eletel-2017-0008.
  • [6] P. Rost, C. J. Bernados, A. De Domenico, M. Di Girolamo, M. Lalam, D. S. Maeder, and D. Wbben, “Cloud technologies for flexible 5g radio access networks,” IEEE Communications Magazine, vol. 52, no. 5, pp. 68–76, 2014.
  • [7] A. Beylerian and T. Ohtsuki, “Multi-point fairness in resource allocation for c-ran downlink comp transmission,” EURASIP Journal on Wireless Communications and Networking, vol. 12, no. 1, pp. 1–10, 2014.
  • [8] D. Boviz, N. Abbas, G. Aravinthan, C. S. Chen, and M. A. Dridi, “Multi-cell coordination in cloud ran: Architecture and optimization,” in International Conference on Wireless Networks and Mobile Communications (WINCOM 2016), October 2016, Morocco, 2016, pp. 1–8.
  • [9] J. Liu, A. Liu, V. Lau, C. S. Chen, and M. A. Dridi, “Joint interference mitigation and data recovery in c-ran with distributed fronthaul compression,” in Proceedings of the International Conference on Communications Systems (ICCS 2016), December 2016, Shenzhen, China, 2016, pp. 1–6.
  • [10] M. Hang, B. Wang, Y. Chen, and K. J. Liu, “Interference alleviation for time-reversal cloud radio access network,” in Proceedings of the International Conference on Global Communications (GLOBECOM), December 2016, Washington, DC, 2016, pp. 1–6.
  • [11] H. Xiaoyan, G. Xue, R. Yu, and S. Leng, “Joint scheduling and beamforming coordination in cloud radio access networks with qos guarantees.” .” IEEE Transactions on Vehicular Technology, vol. 65, no. 7, pp. 5449–5460, 2016.
  • [12] D. Zhu and M. Lei, “Traffic and interference-aware dynamic bburru mapping in c-ran tdd with cross-subframe coordinated scheduling/beamforming,” in Proceedings of the IEEE International Conference on Communications Workshops (ICC), June 2013, Budapest, Hungary, 2013, pp. 884–889. DOI: 10.1109/ICCW.2013.6 649 359.
  • [13] S. S. Hashmi, S. A. Sattar, and K. Soundararajan, “Optimal spectrum utilization and flow controlling in heterogeneous network with reconfigurable devices,” Intl. Journal of Electronics and Telecommunications, vol. 63, no. 3, pp. 269–277, 2017. DOI: 10.1515/eletel-2017-0036.
  • [14] S. Mehta and K. S. Kwak, “Application of game theory to wireless networks,” in Convergence and Hybrid Information Technologies, M. Crisan, Ed. InTech, 2010. DOI: 10.5772/9642.
  • [15] S. Vivek, A. B. Neel, A. B. Mackenzie, R. Menon, L. A. DaSilva, J. E. Hicks, J. H. Reeds, and R. P. Gilles, “Using game theory to analyze wireless ad hoc networks,” IEEE Communications Surveys and Tutorials, vol. 7, no. 1, pp. 46–56, 2005. DOI: 10.1109/COMST.2005.1593279.
  • [16] H. Zhu, Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. New York: Cambridge Univ. Press, 2012.
  • [17] W. Saad, H. Zhu, D. Mrouane, H. Are, and B. Tamer, “Coalitional game theory for communication networks,” IEEE Signal Processing Magazine, vol. 26, no. 5, pp. 77–97, 2009.
  • [18] Z. Zhang, S. Lingyang, H. Zhu, and W. Saad, “Coalitional games with overlapping coalitions for interference management in small cell networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2659–2669, 2014. DOI: 10.1109/TWC.2014.032514.130942.
  • [19] Y. Shi, G. Zhu, S. Lin, and S. Xu, “Rssi-based dynamic coalition formation for cooperative interference management in femtocell networks,” in Proceedings of the Wireless Communications and Mobile Computing Conference (IWCMC 2015), 2015, pp. 1400–1405.
  • [20] F. Pantisano, B. Mehdi, W. Saad, R. Verdone, and M. Latva-Aho, “Coalition formation games for femtocell interference management: A recursive core approach,” in Proceedings of the Wireless Communications and Networking Conference (WCNC), 2011, 2011, pp. 1161–1166.
  • [21] C. Sun, M. Peng, B. Zhang, Y. Sun, Y. Li, and W. Chonggang, “A coalitional game scheme for cooperative interference management in cloud radio access networks,” Transactions on Emerging Telecommunications Technologies, vol. 25, no. 9, pp. 954–964, 2014.
  • [22] Z. Zhou, J. Peng, X. Zhang, K. Liu, and F. Jiang, “A coalitional game scheme for cooperative interference management in cloud radio access networks,” Transactions on Emerging Telecommunications Technologies, vol. 25, no. 9, pp. 954–964, 2014.
  • [23] Y. Sun, J. Wang, F. Sun, and Z. Zhang, “Local altruistic coalition formation game for spectrum sharing and interference management in hyper-dense cloud-rans,” IET Communications, vol. 10, no. 15, pp. 1914–1921, 2016. DOI: 10.1049/iet-com.2016.0094.
  • [24] T. Wang, S. Lingyang, H. Zhu, and W. Saad, “Overlapping coalition formation games for emerging communication networks,” IEEE Network, vol. 30, no. 5, pp. 46–53, 2016.
  • [25] Z. Zhang, S. Lingyang, H. Zhu, and W. Saad, “Coalitional games with overlapping coalitions for interference management in small cell networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2659–2669, 2014. DOI: 10.1109/TWC.2014.032514.130942.
  • [26] B. Di, T. Wang, L. Song, and H. Zhu, “Collaborative smartphone sensing using overlapping coalition formation games,” IEEE Transactions on Mobile Computing, vol. 16, no. 1, pp. 30–43, 2017.
  • [27] C. S. Hyder and X. Li, “Cooperative routing via overlapping coalition formation game in cognitive radio networks,” in Proceedings of the 25th International Conference on Computer Communication and Networks (ICCCN), 2016, 2016, pp. 1–6.
  • [28] S. Xu, C. Xia, and K. S. Kwak, “Overlapping coalition formation games based interference coordination for d2d underlaying lte-a networks,” AEUInternational Journal of Electronics and Communications, vol. 70, no. 2, pp. 204–209, 2016. DOI: 10.1016/j.aeue.2015.10.007.
  • [29] D. Lpez-Prez, V. Alvaro, L. kos, G. De La Roche, and J. Zhang, “Intracell handover for interference and handover mitigation in ofdma two-tier macrocell-femtocell networks,” EURASIP Journal on Wireless Communications and Networking, vol. 142629, pp. 1–10, 2010.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb650730-ac26-402c-b538-1b271fb0c2a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.