PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the Hartle-Thorne Model of Neutron Stars with its Kerr Approximation by using Resonant Switch Model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Hartle-Thorne (H-T) models of slowly rotating neutron or quark stars, characterized by the mass M, dimensionless spin a, and reduced quadrupole moment q, are constructed for the observationally given rotational frequency frot=580 Hz (290 Hz) of the compact star in the atoll source 4U 1636-53, and a wide range of equations of state (EoS) giving sequences of allowed states governed by the relations a(M), q(M). These sequences are used in the framework of the resonant switch (RS) model combining pairs of geodesic oscillation models to match the data of the twin high-frequency quasi-periodic oscillations observed in the 4U 1636-53 source. The results of the matching procedure using the H-T models are compared to those based on the Kerr approximation of the exterior of the neutron stars. The best H-T matches fix the only variant of the RS model combining particular modifications of the relativistic precession model, exclude the rotation frequency frot=290 Hz, restrict the considered EoS to six of them, excluding the strange quark stars, and significantly improve precision of the matches given by any single geodesic oscillations model. The Kerr matching allows two variants of the RS model, thus, giving false information, and only three EoS, thus, giving insufficient information. Our results demonstrate that in the matching procedure, the Kerr approximation can be used only for neutron stars governed by the H-T models with q<2, implying an important restriction on the applicability of the Kerr approximation for description of the oscillatory phenomena around neutron stars. On the other hand, the RS model is sufficiently discriminating for the spacetime metric to be largely determined by fitting to the data. The ranges of the external spacetime parameters of the neutron stars related to the best H-T matches are determined to be M≈2.10-2.13 Mo, a≈0.21-0.25, q≈1.8-2.3. Most compact neutron star is predicted by the Gandolfi EoS, when M≈2.10 Mo, a≈0.21, q≈1.8, with the equatorial radius R≈10.83 km and eccentricity ε=0.03.
Czasopismo
Rocznik
Strony
311--141
Opis fizyczny
Bibliogr. 100 poz., tab., wykr.
Twórcy
autor
  • Research Centre for Theoretical Physics and Astrophysics, Institute of Physics , Silesian University in Opava, Bezručovo nám. 13, CZ-74601 Opava, Czech Republic
  • Research Centre for Computational Physics and Data Processing, Institute of Physics, Silesian University in Opava, Bezruučovo nám. 13, CZ-74601 Opava, Czech Republic
autor
  • Research Centre for Theoretical Physics and Astrophysics, Institute of Physics , Silesian University in Opava, Bezručovo nám. 13, CZ-74601 Opava, Czech Republic
autor
  • Research Centre for Computational Physics and Data Processing, Institute of Physics, Silesian University in Opava, Bezruučovo nám. 13, CZ-74601 Opava, Czech Republic
autor
  • Research Centre for Computational Physics and Data Processing, Institute of Physics, Silesian University in Opava, Bezruučovo nám. 13, CZ-74601 Opava, Czech Republic
Bibliografia
  • Abramowicz, M.A.and Kluźniak, W. 2001, A&A, 374, L19.
  • Abramowicz, M.A., Almergren, G.J.E., Kluźniak, W., and Thampan, A.V. 2003a, General Relativity and Quantum Cosmology, 12070A.
  • Abramowicz, M.A., Bulik, T., Bursa, M., and Kluźniak, W. 2003b, A&A, 404, L21.
  • Akmal, A., and Pandharipande, V.R. 1997, Physical Review C, 56, 2261.
  • Akmal, A., Pandharipande, V.R., and Ravenhall, D.G. 1998, Physical Review C, 58, 1804.
  • Antoniadis, J., Freire, P.C.C., Wex, N., et al. 2013, Science, 340, 448.
  • Bakala, P., Šrámková, E., Stuchlík, Z., and Török, G. 2010, Classical Quantum Gravity, 27, 045001.
  • Balberg, S., and Gal, A. 1997, Nuclear Physics A, 625, 435.
  • Baldo, M., Bombaci, I., and Burgio, G.F. 1997, A&A, 328, 274.
  • Barret, D., Kluźniak, W., Olive, J.F., Paltani, S., and Skinner, G.K. 2005a, MNRAS, 357, 1288.
  • Barret, D., Olive, J.F., and Miller, M.C. 2005b, MNRAS, 361, 855.
  • Belloni, T., Homan, J., Motta, S., Ratti, E., and Méndez, M. 2007, MNRAS, 379, 247.
  • Blaschke, M., and Stuchlík, Z. 2016, Physical Review D, 94, 086006.
  • Bombaci, I., Prakash, M., Prakash, M., et al. 1995, Nuclear Physics A, 583, 623.
  • Bonazzola, S., Gourgoulhon, E., and Marck, J.-A. 1998, Physical Review D, 58, 104020.
  • Boshkayev, K., Bini, D., Rueda, J., Geralico, A., et al. 2014, Gravitation and Cosmology, 20, 233.
  • Boshkayev, K., Rueda, J., and Muccino, M. 2015, Astronomy Reports, 59, 441.
  • Boshkayev, K.A., Quevedo, H., Abutalip, M.S., Kalymova, Z.A., and Suleymanova, S.S. 2016, International Journal of Modern Physics A, 31, 1641006.
  • Boutelier, M., Barret, D., Lin, Y., and Török, G. 2010, MNRAS, 401, 1290.
  • Chandrasekhar, S., and Miller, J.C. 1974, MNRAS, 167, 63.
  • Chodos, A., Jaffe, R.L., Johnson, K., and Thorn, C.B. 1974, Physical Review D, 10, 2599.
  • Colpi, M., and Miller, J.C. 1992, ApJ, 388, 513.
  • Cremaschini, C., and Stuchlík, Z. 2013, Physical Review E, 87, 043113.
  • De Rosa, A., Vignali, C., Bogdanovic, T., et al. 2019, New Astronomy Reviews, 86, 101525.
  • Gandolfi, S., Illarionov, A.Y., Fantoni, S., et al. 2010, MNRAS, 404, L35.
  • Glendenning, N.K. 1985, ApJ, 293, 470.
  • Gondek-Rosi´nska, D., Kluźniak, W., Stergioulas, N., et al. 2014, Physical Review D, 89, 104001.
  • Hartle, J.B. 1967, ApJ, 150, 1005.
  • Hartle, J.B., and Thorne, K.S. 1968, ApJ, 153, 807.
  • Hod, S. 2018a, Physical Review D, 97, 084018.
  • Hod, S. 2018b, The European Physical Journal C, 78, 417.
  • Hod, S. 2018c, Physics Letters B, 776, 1.
  • Kato, S. 2007, PASJ, 59, 451.
  • Kluxniak, W., and Wagoner, R.V. 1985, ApJ, 297, 548.
  • Kluźniak, W. 1998, ApJ, 509, L37.
  • Kološ, M., and Stuchlík, Z. 2013, Physical Review D, 88, 065004.
  • Kološ, M., Stuchlík, Z., and Tursunov, A. 2015, Classical and Quantum Gravity, 32, 165009.
  • Kološ, M., Tursunov, A., and Stuchlík, Z. 2017, The European Physical Journal C, 77, 860.
  • Kostić, U., Cadež, A., Calvani, M., and Gomboc, A. A&A, 2009, 496, 307.
  • Kotrlová, A., Stuchlík, Z., and Török, G. 2008, Classical and Quantum Gravity, 25, 225016.
  • Kovář, J., Stuchlík, Z., and Karas, V. 2008, Classical and Quantum Gravity, 25, 095011.
  • Kovář, J., Kopčáek, O., Karas, V., and Stuchlík, Z. 2010, Classical and Quantum Gravity, 27, 13.
  • Lo, K.-W., and Lin, L.-M. 2011, ApJ, 728, 12.
  • Lorenz, C.P., Ravenhall, D.G., and Pethick, C.J 1993, Physical Review Letters, 70, 379.
  • Miller, J.C 1977, MNRAS, 179, 483.
  • Müller, H., and Serot, B.D. 1996, Nuclear Physics A, 606, 508.
  • Müther, H., Prakash, M., and Ainsworth, T.L 1987, Physics Letters B, 199, 469.
  • Montero, P.J., and Zanotti, O. 2012, MNRAS, 419, 1507.
  • Novotný, J., Hladík, J., and Stuchlík, Z. 2017, Physical Review D, 95, 043009.
  • Pappas, G. 2012, MNRAS, 422, 2581.
  • Pappas, G. 2015, MNRAS, 454, 4066.
  • Peng, Y. 2018, Journal of High Energy Physics, 2018, 185.
  • Postnikov, S., Prakash, M., and Lattimer, J.M. 2010, Physical Review D, 82, 024016.
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 2007, “Numerical Recipes 3rd Edition: The Art of Scientific Computing”, Cambridge University Press.
  • Rikovska Stone, J., Miller, J.C., Koncewicz, R., Stevenson, P.D., and Strayer, M.R. 2003, Physical Review C, 68, 034324.
  • Sanna, A., Méndez, M., Belloni, T., and Altamirano, D. 2012, poster presentation at IAU General Assembly XXVIII, 20-31 August 2012, Beijing, China.
  • Schee, J., and Stuchlík, Z. 2009b, General Relativity and Gravitation, 41, 1795.
  • Šrámková, E., Török, G., Kotrlová, A., et al. 2015, A&A, 578, A90.
  • Stefanov, I.Zh. 2014, MNRAS, 444, 2178.
  • Stefanov, I.Zh. 2016, Astron. Nachr., 337, 246.
  • Steiner, A.W., Lattimer, J.M., and Brown, E.F. 2010, ApJ, 722, 33.
  • Stella, L., and Vietri, M. 1998, ApJ, 492, L59.
  • Stella, L., and Vietri, M. 1999, Physical Review Letters, 82, 17.
  • Stella, L., Vietri, M., and Morsink, S.M. 1999, ApJ, 524, L63.
  • Stergioulas, N. 2003, Living Reviews in Relativity, 6, 3.
  • Straub, O., and Šrámková, E. 2009, Classical and Quantum Gravity, 26, 055011.
  • Strohmayer, T.E., and Markwardt, C.B. 2002, ApJ, 577, 337.
  • Stuchlík, Z., Török, G., and Bakala, P. 2007, arXiv:0704.2318.
  • Stuchlík, Z., and Kotrlová, A. 2009, General Relativity and Gravitation, 41, 1305.
  • Stuchlík, Z., Kotrlová, A., and Török, G. 2011, A&A, 525, A82.
  • Stuchlík, Z., Kotrlová, A., and Török, G. 2012a, Acta Astron., 62, 389.
  • Stuchlík, Z., and Kološ, M. 2012b, Journal of Cosmology and Astroparticle Physics, 10, 8.
  • Stuchlík, Z., Kotrlová, A., and Török, G. 2013, A&A, 552, 10.
  • Stuchlík, Z., Kotrlová, A., Török, G., and Goluchová, K. 2014a, Acta Astron., 64, 45.
  • Stuchlík, Z., and Kološ, M. 2014b, Physical Review D, 89, 065007.
  • Stuchlík, Z., and Kološ, M. 2015a, General Relativity and Gravitation, 47, 27.
  • Stuchlìk, Z., Urbanec, M., Kotrlová, A., Török, G., and Goluchová, K. 2015b, Acta Astron., 65, 169.
  • Stuchlík, Z., and Kološ, M. 2016a, ApJ, 825, 13.
  • Stuchlík, Z., and Kološ, M. 2016b, The European Physical Journal C, 76, 32.
  • Stuchlík, Z., and Kološ, M. 2016c, A&A, 586, A130.
  • Stuchlík, Z., Hledík, S., and Novotný, J. 2016d, Physical Review D, 94, 103513.
  • Stuchlík, Z., Schee, J., Toshmatov, B., Hladík, J., and Novotný, J. 2017, Journal of Cosmology and Astroparticle Physics, 06, 56.
  • Stuchlík, A., Schee, J., Šrámková, E., and Török, G. 2017, Acta Astron., 67, 181.
  • Stuchlík, Z., Kološ, M., Kovář, J., Slaný, P., and Tursunov, A. 2020, Universe, 6, 26.
  • Török, G., Abramowicz, M.A., Kluźniak, W., and Stuchlík, Z. 2005, A&A, 436, 1.
  • Török, G., Abramowicz, M.A., Bakala, P., et al. 2008a, Acta Astron., 58, 15.
  • Török, G., Bakala, P., Stuchlík, Z., and Cech, P. 2008b, Acta Astron., 58, 1.
  • Török, G., Abramowicz, M.A., Bakala, P., Bursa, M., Horák, J., Rebusco, P., and Stuchlik, Z. 2008c, Acta Astron., 58, 113.
  • Török, G. 2009, A&A, 497, 661.
  • Török, G., Bakala, P., Šrámková, E., Stuchlík, Z., and Urbanec, M. 2010, ApJ, 714, 748.
  • Török, G., Bakala, P., Šrámková, E., et al. 2012, ApJ, 760, 138.
  • Török, G., Goluchová, K., Urbanec, M., et al. 2015, in: “Proceedings of RAGtime: Workshops on black holes and neutron stars”, Opava, 2015.
  • Török, G., Goluchová, K., Horák, J., et al. 2016a, MNRAS, 457, L19.
  • Török, G., Goluchová, K., Urbanec, M., et al. 2016b, ApJ, 833, 273.
  • Tursunov, A., and Stuchlík, Z., and Kološ, M. 2016, Physical Review D, 93, 084012.
  • Tursunov, A., and Kološ, M., Stuchlík, Z., and Galtsov, D.V. 2018, ApJ, 861, 2.
  • Urbanec, M., Beták, E., and Stuchlík, Z. 2010, Acta Astron., 60, 149.
  • Urbanec, M., Miller, J.C., and Stuchlík, Z. 2013, MNRAS, 433, 1903.
  • Urbancová, G., Urbanec, M., Török, G., et al. ApJ, 2019, 877, 66.
  • van der Klis,M. 2006, in: “Compact Stellar X-Ray Sources”, Eds.W.H.G.Lewin and M.van der Klis, Cambridge University Press pp.39-112.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb622348-cb95-403f-b1b7-0189c9422a45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.