Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce the notion of an F-weak contraction and prove a fixed point theorem for F-weak contractions. Examples are given to show that our result is a proper extension of some results known in the literature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
147--155
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- University of Łódź, Faculty of Mathematics and Computer Science, Department of Nonlinear Analysis, Banacha 22, 90-238 Łódź, Poland
autor
- Dong Thap University, Department of Mathematics, 783 Pham Huu Lau Street Ward 6, Cao Lanh City Dong Thap Province, Vietnam, Postal Code: 84
Bibliografia
- [1] M. A. Alghamdi, A. Petrusel, N. Shahzad, A fixed point theorem for cyclic generalized contractions in metric spaces, Fixed Point Theory Appl. 122 (2012), 10 pages.
- [2] T. V. An, K. P. Chi, E. Karapinar, T. D. Thanh, An extension of generalized (ψ, φ)-weak contractions, Int. J. Math. Math. Sci. 2012 (2012), 11 pages.
- [3] V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 105 (2012), 16 pages.
- [4] R. M. T. Bianchini, Su un problema di S. Reich aguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103–108.
- [5] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.
- [6] H.-S. Ding, L. Li, S. Radenovic, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl. 96 (2012), 17 pages.
- [7] W.S. Du, S.X. Zheng, Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese J. Math. 16(3) (2012), 857–868.
- [8] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16(2) (1973), 201–206.
- [9] A. Latif, W. A. Albar, Fixed point results in complete metric spaces, Demonstratio Math. 41 (2008), 145–150.
- [10] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14(1) (1971), 121–124.
- [11] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012), 11 pages.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb616c70-9968-4f04-9f12-79569dd8e14c