PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decomposition versus Minimal Path and Cuts Methods for Reliability Evaluation of an Advanced Robotic Production System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As complex systems have become global and essential in today’s society, their reliable design and the determination of their availability have turned into a very important task for managers and engineers. Industrial robots are examples of these complex systems that are being increasingly used for intelligent transportation, production and distribution of materials in warehouses and automated production lines. In this paper, two techniques of reliability evaluation are developed for a complex system of robots. Decomposition method and minimal path and cuts method are adapted for the proposed complex system. For practical implementation, a particular robot system is first modeled. Then, reliability block diagram is adopted to model the complex system for reliability evaluation purpose. Finally, the methods are implemented and their properties are discussed.
Twórcy
  • Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
  • Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
autor
  • Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
Bibliografia
  • [1] Abo Al-Kheer A., El-Hami A., Kharmanda M. G., Mouzaen A. M., “Reliability-based design for soil tillage machines”, Journal of Terramechanics, vol. 48, no. 1, 2011, 57–64. DOI: 10.1016/j.jterra.2010.06.001.
  • [2] Aldemir T., “Computer-assisted Markov failure modeling of process control system”, IEEE Transactions on Reliability, vol. 36, 1987, 133–44.
  • [3] Apostolakis G., Chu T. L., “Time-dependent accident sequences including human actions”, Nucl. Technol., 64, 1984, 115–26.
  • [4] Avontuur G.C., Reliability analysis in mechanical engineering design, [Ph.D. thesis], Delft University Press, Delft, The Netherlands, 2000.
  • [5] Avontuur G.C., van der Werff K., “An implementation of reliability analysis in the conceptual design phase of drive trains”, Reliability Engineering & System Safety, vol. 73, no. 2, 2001, 155–165.
  • [6] Bobbio A., Use of Petri nets for System Reliability Analysis. Paper presented at Ispra Course ‘Advanced, Informatic Tools for Safety and ReliabilityAnalysis’, Commission of the European Communities,Ispra (VA), Italy, 24th–28th Oct., 1988.
  • [7] Dayal B., Singh J., “Reliability analysis of a system in a fluctuating environment”, Microelectron. Reliab., vol. 32, 1992, 601–603.
  • [8] Dhillon B.S., Natesan J., “Stochastic analysis of outdoor power system in fluctuating environment”, Microelectron. Reliab., vol. 23, 1983, 867–881.
  • [9] Enevoldsen I., Sørensen J.D., “Reliability-based optimization in structural engineering”, Struct. Saf., vol. 15, no. 3, 1994, 169–96.
  • [10] Fiorenzo M., “Automation and Robotic in Construction, New Challenge for Old and New Industrialized Countries”, Automation in construction,2008, 109–110.
  • [11] Goel P., Singh J., Reliability analysis of a standby complex system having imperfect, 1995.
  • [12] Haftka R.T., Gürdal Z., Elements of structural optimization, 3rd edition, Kluwer, New York, USA, 1992.
  • [13] Hassan M., Aldemir T., “A data base oriented dynamic methodology for the failure analysis of closed loop control systems in process plants”, Reliability Engineering & System Safety, 27, 1990, 275–322.
  • [14] Hickman J. W., PRA procedures guide: a guide to the performance of probabilistic risk assessments for nuclear power plants, NUREG/CR-2300, vol. 1, 1983.
  • [15] Hoyland A., Rausand M., System reliability theory: models, statistical methods, and applications, 2nd ed., John Wiley & Sons, Inc, 2004.
  • [16] Jeong K. S., Chang S. H.m, Kim T. W., “Development of the dynamic fault tree using Markovian process and supercomponents”, Reliability Engineering & System Safety, 19, 1987, 137–160.
  • [17] Korayem M.H., Iravani A., “Improvement of 3P and 6R Mechanical Robots Reliability and Quality Applying FMEA and QFD Approaches”, Robotics and Computer-Integrated Manufacturing, vo. 24, no. 3, 2008, 472–487. DOI: 10.1016/j.rcim.2007.05.003.
  • [18] Kumamoto H., Henley E. J., Probabilistic risk assessment and management for engineers and scientists, 2 ed., Wiley-IEEE Press, 2000.
  • [19] Kumar D., Singh J., Singh I.P., “Reliability analysis of the feeding system in paper industry”, Microelectron. Reliab., vol. 28, 1988, 213–215.
  • [20] Kuschel N., Rackwitz R., “Two basic problems in reliability-based structural optimization”, Math Methods Oper. Res, vol. 46, no. 3, 1997, 309–33.
  • [21] Leroy A., “Economic study of the need to keep an emergency pipeline repair system on stand-by”, The SRS Quarterly Digest, 1989, 10–14.
  • [22] Mahajan P., Singh J. “Reliability of utensils manufacturing plant — A case study”, Opsearch, vol. 36, 1999, 260–271.
  • [23] Matsuoka T., Kobayashi M., “GO-FLOW: A new reliability analysis methodology”, Nuclear Science & Engineering, vol. 9, no. 8, 1988, 64–78.
  • [24] Royset J.O., Der Kiureghian A., Polak E., “Reliability-based optimal structural design by the decoupling approach”, Reliab. Eng. Syst. Saf., vol. 73, no. 3, 2001, 213–21.
  • [25] Singh J., “A warm stand by redundant system with common cause failures”, Reliab. Eng. Syst. Saf., 26, 1989, 135–141.
  • [26] Siu N., Acosta C., “Dynamic event tree analysis – an application to SGTR”. In: Proceedings of the International Conference Probabilistic Safety Assessment and Management (PSAM), ed. G. E. Apostolakis. Elsevier Science Publishers, London 1991, 539–41.
  • [27] Smidts C., Simulation des srquences industrielles accidentelles prenant en compte le facteur humaine. Application au domaine des centrales nucleaires. PhD Thesis, Universitd Libre de Bruxelles, Bruxelles, France, 1990.
  • [28] Stamatelatos M., Vesely W., Dugan J.B., Fragola J., Minarick J., Railsback J., Fault tree handbook with aerospace applications. Washington, DC: NASA Office of Safety and Mission Assurance, 2002.
  • [29] switch over device, Microelectron. Reliab., 35,285–288.
  • [30] Vesely W. E., Goldberg F. F., “Time dependent unavailability analysis of nuclear safety systems”,IEEE Trans. Reliability, vol. 264, 1977, 257–260.
  • [31] Williams R. L., Gateley W. Y., GO Methodology –Overview. EPRI NP-765, Electric Power Research Institute, 1978.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb614276-3d32-4eab-8ac6-09db10906cd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.