Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Within the research, selected multilayer technological systems created as combinations of water-glass containing moulding sand with foundry tooling, were characterised on the grounds of their electrical properties. By measuring resonance frequency and quality factor of a waveguide resonance cavity, real component of permittivity εr′ and loss tangent tgδ were determined for multilayer foundry systems with various qualitative and quantitative compositions. It was demonstrated that combination of a sandmix and foundry tooling with known dielectric properties results in a system with different physico-chemical properties, whose relation to the parameters of individual components of the system is undefined at this research stage. On the grounds of measurement results, theoretical value of microwave heating power, dissipated in unit volume of the selected multilayer foundry system, was determined. Knowledge of theoretical heating power and evaluation of physical, chemical and structural changes occurring in moulding sands exposed to microwaves in such a technological system makes a ground for empirical modelling of the process of microwave heating of foundry moulds and cores.
Czasopismo
Rocznik
Tom
Strony
21--24
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
- Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Wang, J., Fan, Z., Zan, X. & Pan, D. (2009). Properties of sodium silicate bonded sand hardened by microwave heating. China Foundry. 6(3), 191-196.
- [2] Stachowicz, M., Granat, K. & Nowak, D. (2013). Dielectric hardening method of sandmixes containing hydrated sodium silicate. Metalurgija. 52(2), 169-172.
- [3] Kaczmarska, K., Grabowska, B. & Drożyński, D. (2016). Potential of the application of the modified polysaccharides water solutions as binders of moulding sands. Metalurgija. 55(1), 15-18.
- [4] Liu, F., Fan, Z., Liu, X., Huang, Y. & Jiang, P. (2016). Effect of surface coating strengthening on humidity resistance of sodium silicate bonded sand cured by microwave heating. Materials and Manufacturing Processes. 31(12), 1639-1642. DOI: 10.1080/10426914.2015.1117631.
- [5] Szymański, A. (2007). Soil Mechanics. Warsaw: SGGW Publisher.
- [6] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Foundry Practice. Warsaw: Publishing House "Wydawnictwa Naukowo-Techniczne".
- [7] Ratanadecho, P., Aoki, K. & Akahori, M. (2009). Influence of irradiation time, particle sizes, and initial moisture content during microwave drying of multi-layered capillary porous materials. Journal of Heat Transfer. 124, 151-161. DOI: 10.1115/1.1423951.
- [8] Chen, M., Zhu, Y., Pan, Y., Kou, H., Xu, H. & Guo, J. (2011). Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Materials and Design. 32, 3013-3016. DOI: 10.1016/j.matdes.2010.12.043.
- [9] Yeh, P., Yariv, A. & Hong, Chi-S. (1977). Electromagnetic propagation in periodic stratified media. I. General theory, Journal of the Optical Society of America. 67(4), 423-438.
- [10] Lewandowski, L. (1997). Materials for casting moulds. Kraków: Akapit.
- [11] Mujumdar, S.A. (Ed.) (1995). Handbook of Industrial Drying. New York: Marcel Decker.
- [12] Saechtling, H. (1955/2000). Polymeric materials, Handbook, Warsaw: WNT Scientific and Technical Publishing.
- [13] Granat, K., Opyd, B., Stachowicz, M., Nowak, D. & Jaworski, G. (2013). Usefulness of foundry tooling materials in microwave heating process. Archives of Metallurgy and Materials. 58(3), 919-922. DOI: 10.2478/amm-2013-0101.
- [14] Lisowski, M., (2004). Measurements of resistivity and permittivity of solid dielectrics. Wrocław: Publishing House of Wroclaw University of Technology.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb5f29e2-0079-4f37-aa02-452c87dca23c