PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Durability Assessment of Composite Structural Element Reinforced with Fabric due to Delamination

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Layer composites reinforced with fabrics – laminates are construction materials in which mechanical properties can be shaped by designing their microstructure appropriately. However, the multi-phase microstructure of laminates makes it difficult to calculate the strength of the laminate constructions, especially when the reinforcement is a fabric. The article presents a special calculation model for determining the strength of an exemplary construction element made of laminate reinforced with a roving fabric with a plain weave made of carbon fibers. The computational model reflected in a simplified way the laminate microstructure, i.e. the number and orientation of the reinforcement fabric layers and its weave, and enabled a simulation of the behavior of the construction element under load up to fracture, which occurred as a result of breaking the reinforcement and interlayer crack – delamination. The simulation results were compared with the results of experimental stand tests. A method of modifying the computational model for laminates reinforced with non-plain weave was also suggested.
Rocznik
Strony
333--340
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • University of Bielsko-Biala, Department of Mechanical Engineering Fundamentals, Bielsko-Biala, Poland
  • University of Bielsko-Biala, Department of Mechanical Engineering Fundamentals, Bielsko-Biala, Poland
Bibliografia
  • [1] Carlsson, L. A., Adams, D. F., Pipes, R. B. (2014). Experimental characterization of advanced composite materials (4 ed.). CRC Press (Boca Raton).
  • [2] Xiao, Z., Pei, L., Zhang, F., et al. (2019). Parameter measurement of biaxial braided composite preform based on phase congruency. Autex Research Journal, 19(1), 8–16.
  • [3] Yang, Y., Liu, X., Wang, Y-Q., et al. (2017). A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending. Composites Science and Technology, 151, 85–93.
  • [4] Dong, K., Peng, X., Zhang, J., et al. (2017). Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies. Composite Structures, 176, 329–341.
  • [5] Lindgaard, E., Bak, B. L. V. (2019). Experimental characterization of delamination in off-axis GFRP laminates during mode I loading. Composite Structures, 220, 953–960.
  • [6] Nour, A., Gherbi, M. T., Tawfiq, I. (2017). Analysis of the Bauschinger effect on a multilayer helicopter blade by XFEM simulation. Aerospace Science and Technology, 69, 97–113.
  • [7] Stadnicki, J., Tokarz, Z. (2016). Mesoscale finite element model for calculating deformations of laminate composite constructions. Advances in Mechanical Engineering, 8(2), 1–9.
  • [8] Vinšová, L., Urban, T. (2017). Testing of mechanical properties of thick-walled carbon fiber composite for FEM simulations. Materials Today: Proceedings, 4, 5989–5994.
  • [9] Krueger, R. (2004). Virtual crack closure technique: history, approach, and applications. Applied Mechanics Reviews, 57(2), 109–143.
  • [10] Lindgaard, E., Bak, B. L. V., Glud, J. A., et al. (2017). A user programmed cohesive zone finite element for ANSYS Mechanical. Engineering Fracture Mechanics, 180, 229–239.
  • [11] Soni, G., Singh, R., Mitra, M., Falzon, B. G. (2014). Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M2RVE). International Journal of Solids and Structures, 51, 449–461.
  • [12] Naghdinasab, M., Farrokhabadi, A., Madadi H. (2018). A numerical method to evaluate the material properties degradation in composite RVEs due to fiber-matrix debonding and induced matrix cracking. Finite Elements in Analysis and Design, 146, 84–95.
  • [13] Bednarcyk, B.A., Stier, B., Simon, J-W., et al. (2015). Meso- and micro-scale modeling of damage in plain weave composites. Composite Structures, 121, 258–270.
  • [14] Doitrand, A., Fagiano, C., Irisarri, F.-X., Hirsekorn, M. (2015). Comparison between voxel and consistent meso-scale models of woven composites. Composites: Part A, 73, 143–154.
  • [15] Esposito, L., Pucillo, G. P., Penta, F., Rosiello, V. (2016). Micromechanical study and simulation of the interlaminar failure of a woven composite laminate. Procedia Structural Integrity, 2, 1870–1877.
  • [16] GMW16418: 2016. Door beam bending strength test.
  • [17] Product data sheet: 2014. Biresin® CR120. Composite resin system.
  • [18] Marszałek, J., Stadnicki, J. (2018). Simulation of delamination in a composite using a shell-beam mesoscale finite element model. Fibres & Textiles in Eastern Europe, 4(130), 97–103.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb5dca86-f634-4f57-a4ec-08ed76014be6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.