PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unsteady MHD natural convective boundary layer flow and heat transfer over a truncated cone in the presence of pressure work

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present paper is to analyse the effect of MHD on unsteady natural convection boundary layer flow and heat transfer over a truncated cone in the presence of pressure work. Suitable transformation is utilized to form a system of coupled non-linear partial differential equations for governing both the flow and heat transfer. These equations have been solved numerically by utilizing an implicit finite difference scheme along with quasilinearization method. Here, the computed numerical results are displayed graphically in terms of the local Nusselt number, skin friction, temperature distribution, and velocity distribution for various values of the magnetic and pressure work parameters along with the fixed Prandtl number
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Maharaja Institute of Technology Mysore S R Patna 571477, India
  • Department of Mathematics, Maharaja Institute of Technology Mysore S R Patna 571477, India
Bibliografia
  • [1] Merk, E.J., & Prinss, J.A. (1954). Thermal convection in laminar boundary I. Appl. Sci. Res., 4A, 3, 11-24.
  • [2] Merk, E.J., & Prinss, J.A. (1954). Thermal convection in laminar boundary II. Appl. Sci. Res., 4A, 3, 195-206.
  • [3] Free, W.H. (1961). Convection similarity flows about two dimensional and axisymmetric bodies with closed lower ends. International Journal of Heat and Mass Transfer, 2, 1-2, 121-135.
  • [4] Hering, R.G., & Grosh, R.J. (1962). Laminar free convection from a non-isothermal cone. International Journal of Heat and Mass Transfer, 5(11), 1059-1068.
  • [5] Roy, S. (1974). Free convection over a slender vertical cone at high Prandtl numbers. ASME Journal of Heat MassTransfer, 101, Feb., 174-176.
  • [6] Na, T.Y., & Chiou, J. P. (1979). Laminar natural convection over a frustum of a cone. Applied Scientific Research, 35, 5, 409-421.
  • [7] Alamgir, M. (1979). Over-all heat transfer from vertical cones in laminar free convection: an approximate method. Transactions of ASME Journal of Heat Transfer, 101, 1, 174-176.
  • [8] Gorla, R.S.R., Chamkha, A., & Ghodeswar, K. (2014). Natural convective boundary layer flow over a vertical cone embedded in a porous medium saturated with a nanofluid. Journal of Nanofluids, 3, 65-71.
  • [9] Sulochana, C., Ashwinkumar, G.P., & Sandeep, N. (2016). Numerical investigation of chemically reacting MHD flow due to a rotating cone with thermophoresis and Brownian motion. International Journal of Advanced Science and Technology, 86, 61-74.
  • [10] Alim, M.A., Alam, M.M., & Chowdhury, M.K. (2006). Pressure work effect on natural convection from a vertical circular cone with suction and non-uniform surface temperature. Mechanical Engineering, 36, 6-11.
  • [11] Alim, M.A., Alam, M.M., & Chowdhury, M.K. (2007). Free convection from a vertical permeable circular cone with pressure work and non-uniform surface temperature. Nonlinear Analysis Modeling and Control, 12, 1, 21-32.
  • [12] Elbashbeshy, E.M.A., Emam, T.G., & Sayeed, E.A. (2013). Effect of pressure work on free convection flow about a truncated cone. International Journal of Physical Sciences, 2, 01-10.
  • [13] Chakrabarathi, A., & Guptha, A.S. (1979). A note MHD flow over a streachig permeable surface. Applied Mathematics, 37, 73-78.
  • [14] Reddy, P.S., Sreedevi, P., & Chamkha, A. (2018). Magnetohydynamic boundary layer heat and mass transfer characterstic of nonofluid over vertical cone under convective boundary condition. International Journal of Propulsion and Power Research, 7(4), 308-319.
  • [15] Nadeem, S., & Saleem, S. (2014). Theoretical Investigation of MHD nanofluid flow over a rotating cone: an optimal solutions. Information Sciences Letters, 3, 2, 55-62.
  • [16] Sriniva, A.H., & Eswara, A.T. (2016). Effect of internal heat generation or absorption on MHD free convection from an isothermal truncated cone. International Alexandria Engineering Journal, 55(2), 1367-1373.
  • [17] Pullepu, Bapuji, & Chamkha, A.J. (2009). Transient laminar MHD free convective flow past a vertical cone with non-uniform surface heat flux. Nonlinear Analysis: Modeling and Control, 14, 4, 489-500.
  • [18] Palani, G., & Lalith Kumar, E.J. (2016). Magneto hydro dynamic free convective flow over a non isothermal vertical cone with Joule heating and viscous dissipation. Indian Journal of Science and Technology, 9(S1).
  • [19] Reddy, P.S., Sreedevi, P., & Chamkha, Ali J. (2016). Heat and mass transfer flow of a nanofluid over an inclined plate under enhanced boundary conditions with magnetic field and thermal radiation. Heat Transfer-Asian Research, 46(7), 815-839.
  • [20] Prabavathi, B., Sudarsana Reddy, P., & Bhuvana Vijaya, R. (2018). Heat and mass transfer enhancement of SWCNTs and MWCNTs based Maxwell nanofluid flow over a vertical cone with slip effects. Powder Technology.
  • [21] Sudarsana Reddy, P., Jyothi, K., & Suryanarayana Reddy, M. (2018). Flow and heat transfer analysis of carbon nanotubes-based Maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 576.
  • [22] Gebhart, B. (1962). Effects of viscous dissipation in natural convection. Journal of Fluid Mech., 14(2), 225-232.
  • [23] Inouye, K., & Tate, A. (1974). Finite difference version of quasilinearization applied to boundary layer equations. AIAA Journal, 12, 558-560.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb5629a1-78c4-46e1-b669-cf4aa917f22f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.