PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial analysis of the impact of motor vehicle fires on the urban environment using the example of Warsaw

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This scientific article is dedicated to the analysis of the impact of vehicle fires on the urban environment. In the context of the dynamic processes of urbanization and societal mobilization, understanding the consequences of vehicle fires becomes exceedingly important for ensuring sustainable urban development and improving residents’ quality of life. The article presents the results of spatial analyses of vehicle fires that occurred within the Warsaw area between 2010 and 2021. In the analytical section, an attempt was made to identify the parts of the city where residents were most exposed to the emission of toxic substances. According to the presented calculations, almost 3 tons of toxic substances are released into the atmosphere every year as a result of vehicle fires in Warsaw. The article also provides information about the materials used in motor vehicles and assesses their environmental impact through the emission of hazardous substances in the event of a vehicle fire. Proposed changes that could minimize the number of vehicle fires in the future are also indicated in the article, thereby contributing to increased road safety levels in the city and positively influencing the environment.
Rocznik
Strony
181--191
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • MSc; Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8 St.,40-019 Katowice, Poland
Bibliografia
  • [1] Król, A. & Król, M. (2018). Estimation of the number of threatened people in a case of fire in road tunnels. Directions of Development of Transport Networks and Traffic Engineering, TSTP 2018. Lecture Notes in Networks and Systems, Vol.51, Springer, 27–40.
  • [2] Król, A., & Król, M. (2021). Numerical investigation on fire accident and evacuation in a urban tunnel for different traffic conditions. Tunnelling and Underground Space Technology, Vol.109.
  • [3] Erdélyiová R., Leitner B. & Ivančo M. (2019). Risk and the result of the fire in multistorey car park, Transportation Research Procedia, vol. 40, 1311–1318,
  • [4] Król, M. & Król, A. (2021). The Threats Related to Parking Electric Vehicle in Underground Car Parks. Intelligent Solutions for Cities and Mobility of the Future, TSTP 2018. Lecture Notes in Networks and Systems, Vol.352, Springer, 72–81.
  • [5] Felix J. D., Berner A., Wetherbee G. A., Murphy S. F. & Heindel R. C. (2023). Nitrogen isotopes indicate vehicle emissions and biomass burning dominate ambient ammonia across Colorado's Front Range urban corridor. Environmental Pollution, 316(1).
  • [6] Moore S. (2023). Automotive Plastics Will Be $43 Billion Market by 2030. Retrieved from https://www.plasticstoday.com/automotive-and-mobility/automotive-plastics-will-be-43-billion-market-2030.
  • [7] The advantages of plastics in automotives. Retrieved from https://www.preferredplastics.com/blog/2016/02/17/the-advantages-of-plastics-in-automotives/
  • [8] Tworzywa polimerowe w pojazdach (Polymer plastics in vehicles). Retrieved from https://www.ppoz.pl/czytelnia/rozpoznawanie-zagrozen/Tworzywa-polimerowe-w-pojazdach/idn:954
  • [9] Passenger car registrations around the world (share per region). Retrieved from https://www.acea.auto/figure/passenger-car-registrations-around-world-share-per-region/
  • [10] Regulation No 34 of the Economic Commission for Europe of the United Nations (UNECE) – Uniform provisions concerning the approval of vehicles with regard to the prevention of fire risks [2016/1428].
  • [11] Regulation No 107 of the Economic Commission for Europe of the United Nations (UN/ECE) – Uniform provisions concerning the approval of category M2 or M3 vehicles with regard to their general construction.
  • [12] UN Regulation No 118 – Uniform technical prescriptions concerning the burning behaviour and/or the capability to repel fuel or lubricant of materials used in the construction of certain categories of motor vehicles [2020/241].
  • [13] Wadhwa S. (2019). Air Pollution by Burning Plastic: How is it Caused? Retrieved from https://repurpose.global/blog/post/a-burning-problem-plastic-and-air-pollution.
  • [14] Pozo K. et al. (2023). Environmental signature and health risk assessment of polybrominated diphenyl ethers (PBDEs) emitted from a landfill fire in Santiago de Chile. Environmental Pollution, vol.330.
  • [15] Verma R., Vinoda K.S., Papireddy M, & Gowda A.N.S. (2016). Toxic Pollutants from Plastic Waste – A Review. Procedia Environmental Sciences, vol. 35.
  • [16] Tartakowski Z. (2013). Recykling materiałów polimerowych z samochodów wycofanych z eksploatacji (Recycling of polymer materials from vehicles car). Autobusy (Buses), Instytut Naukowo-Wydawniczy “SPATIUM”, R.10, nr 14, 262–264.
  • [17] https://powerrubber.com/en/rubber-compounds/rubber-br/
  • [18] https://www.kentelastomer.com/what-is-polyisoprene/
  • [19] American Chemistry Council (2023). Lighting the Way to the Future of Motor Vehicles. Chemistry and Automobiles.
  • [20] https://www.nokiantyres.com/innovation/facts-about-tyres/production-process/
  • [21] https://www.oponeo.pl/artykul/ile-wazy-opona
  • [22] The International Council on Clean Transportation (2016). European vehicle market statistics. Pocketbook 2016/17.
  • [23] Alrejjal A. & Ksaibati K. (2023). Impact of crosswinds and truck weight on rollover propensity when negotiating combined curves. International Journal of Transportation Science and Technology, 12(1).
  • [24] http://iletowazy.pl/motoryzacja/ile-wazy-autobus/
  • [25] https://www.jdpower.com/motorcycles/shopping-guides/how-much-do-motorcycles-weigh
  • [26] Szulc K. (2022). Numerical Study of Conditions on the Staircase During a Fire in a Public Building. Architecture, Civil Engineering, Environment, 15(1), 91–102.
  • [27] Reisen F., Bhujel M. & Leonard J. (2014). Particle and volatile organic emissions from the combustion of a range of building and furnishing materials using a cone calorimeter, Fire Safety Journal, Vol.69.
  • [28] Borgas M. S & Reisen F. (2014). Final report for the operational readiness of rural firefighters (air toxins) project. Bushfire CRC LTD.
  • [29] Mentes D., Tóth C.E., Nagy G., Muránszky G. & Póliska C. (2022). Investigation of gaseous and solid pollutants emitted from waste tire combustion at different temperatures. Waste Management, Vol.149, 302–312.
  • [30] Statistical Office in Warsaw (2022). Panorama of Warsaw districts in 2021, Warsaw.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb400da0-9651-4ebf-aff0-2b9594e01b23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.