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Abstract. This article is devoted to deduce the expression of the Green’s function
related to a general constant coefficients fractional difference equation coupled to
Dirichlet conditions. In this case, due to the points where some of the fractional
operators are applied, we are in presence of an implicit fractional difference equation.
So, due to such a property, it is more complicated to calculate and manage the
expression of the Green’s function than in the explicit case studied in a previous
work of the authors. Contrary to the explicit case, where it is shown that the Green’s
function is constructed as finite sums, the Green’s function constructed here is an
infinite series. This fact makes necessary to impose more restrictive assumptions on the
parameters that appear in the equation. The expression of the Green’s function will be
deduced from the Laplace transform on the time scales of the integers. We point out
that, despite the implicit character of the considered equation, we can have an explicit
expression of the solution by means of the expression of the Green’s function. These
two facts are not incompatible. Even more, this method allows us to have an explicit
expression of the solution of an implicit problem. Finally, we prove two existence
results for nonlinear problems, via suitable fixed point theorems.
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1. INTRODUCTION AND PRELIMINARIES

Considering integrals and derivatives of arbitrary orders allows modeling many real
phenomena in which the value that the solution takes at a given instant depends on
the value of the solution in all the previous moments of the process. Thus, fractional
calculus is an excellent tool when considering several physical phenomena that appears
in, among others, viscoelasticity, neurology and control theory [15, 16, 18, 21, 22, 24].
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During the last decades, a lot of authors studied fractional difference equations and
there has been a progress made in developing the basic theory in this field. We refer
to the reader the monographs [13, 20] for more details.

We use the standard notation N, = {a,a+ 1,a+2,...} for a € R, and

[e, e+ ngly, = [¢, ¢+ ng] NN,

for ¢ € R and ng € Nj.
In [4] Atici and Eloe proved that for all (¢,s) € [v—2,v+b+ 1]y, , X [0,b+ 1]n,,
the following function

IO U M (R -
Go(t,s):i (v+b+1)=1D (t—s—1) , s<t-v+l

t(u—l)(v+bis)(v—l)
I'(v) RO Ceya t—v+1<s,

is the related Green’s function to the Dirichlet problem

“AYy(t)=h(t+v—-1), te[0,b+1]y,,
y(v=2)=yw+b+1)=0,

with v € R, 1 < v < 2 and b € N. Moreover, they proved that Gy(t,s) > 0 for all
(t,s) € [v—1,v+bln, , x[0,b+ 1]n,-

Using previous expression and constructing Green’s function as a series of functions,
in [8], by using the spectral theory, is ensured, for a suitable range of values of
the non-constant function a(t), the positiveness of the Green’s function related to the
following Dirichlet problem

“Aty(t)+at+v—1Dy(t+v—-1)=h{t+v-1),
y(v=2)=yv+b+1)=0,

for t € [0,b+ 1]n,, where v € R with 1 <v < 2and b€ N, b > 5.

A similar approach has been done in [7] for the following problem with mixed
boundary conditions:

“Aly)+at+v-—1NyEt+v—-1)=h{t+v-—1),
y(v—2)=Ay(v+b+1-p)=0,

withl<ov<2and 0< g < 1.

Using another approach in [2, 3, 5] the general expression of several linear n-th

order initial value problems is obtained. They use Ro(f(t))(s) the Laplace transform
on the time scale of integers [6, 10], which is defined by the following expression:

R 106 = Y (5 )Hlf(t)-

= s+1

Recently, in [9] the authors considered the problem

—AVy(t) + aAFyt+v—p—1)=h(t+v—-1), (1.1)
ylo=2)=yw+b+1)=0, (1.2)
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for t € I = [0,b + 1]n,, where p, v € R such that 0 < p < 1l and 1 < v < 2;
AV and A" are the standard v-th and p-th order Riemann-Liouville fractional difference
operators, respectively; « is a real constant and h : I — R.

By using the Laplace transform Ro(f(¢))(s) they obtained the general expression
of equation (1.1) and deduced the explicit expression of the Green’s function related
to problem (1.1)—(1.2). It was proven that such Green’s function has some symmetric
properties and is positive on [v—1, v+b]y,_, X [0,b+1]y, for all @ > 0 and v—p—1 > 0,
which improved the results given in [4] for the particular case of o = 0. Moreover,
the authors deduced some strong positiveness conditions on the Green’s function that
allow them to construct suitable cones where to deduce the existence of solutions
of related nonlinear problems. We point out that, in such case, the fact that the
fractional operator A* is defined on the points t+wv — p— 1 gives us a explicit equation.
Such property gives us the expression of the Green’s function as a combination of
finite sums.

The aim of this paper is to continue our work in this direction as we consider the
following equation

—A%yt) +alAty(t+v—p)=h(t+v-1), tel={0,1,...,0+1}, (1.3)

coupled to the boundary conditions (1.2).

Here p, v € Rsuch that 0 < p <1 and 1 < v < 2; AV and A* are the standard
v-th and p-th order Riemann—Liouville fractional difference operators, respectively;
« is a constant and h : I — R. We point out that even if we use Laplace transform
Ro(f(t))(s) to equation (1.3), we deduce that the sums are not finite as ones given
in [9]. As a result, we study the convergence of the series and we apply some fixed
point results to deduce different existence results for a related non linear problem. We
remark that problem (1.3) coupled to the Dirichlet conditions (1.2) has been studied
in [14] for the particular case of o = 0.

The paper is organized as follows: We start with an introduction where we compile
the main concepts and properties which we will use along the paper. After showing
the expression of the Green’s function of Problem (1.3) — (1.2) for |o| < 1 (that is
the condition that characterizes the convergence of the used series), which is obtained
in a similar manner as [9] for Problem (1.1) — (1.2), we deduce, in Section 2, the
main properties related to the sign and a priori bounds of the obtained function. In
Sections 3 and 4 we deduce two existence (and multiplicity in Section 4) results for
a nonlinear problem. Such existence results follow from the expression of the Green’s
function by constructing an operator whose fixed points coincides with the solutions
of the problems that we are looking for. In Section 4, the sign properties obtained in
Section 2 allow us to define suitable cones where to apply fixed point theorems for
operators defined on cones. We finalize the paper in Section 5 with two examples that
point out the applicability of the obtained existence results.

First we recall some basic definitions and lemmas, which will be used till the end
of this work.
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Definition 1.1. We define t(*) = %, for any t and v for which the right-hand
side is well defined. We also appeal to the convention that if ¢t + 1 — v is a pole of the

Gamma function and ¢ + 1 is not a pole, then t(*) = 0.

Definition 1.2. The v-th fractional sum of a function f, for v > 0 and t € Ny, is
defined as

A0 = s (=5 = ) £(o)

We also define the v-th fractional difference for v > 0 by AYf(t) :== ANAV=N £(¢),
where t € Nyy ny—, and N € N is chosen so that 0 < N —1 < v < N.

The following formula for AYf(¢) can be treated as the alternate definition

of AV f(t).

Theorem 1.3. Let f : N, = R, v > 0 and N € N is chosen so that0 < N—1 < v < N.

Then
1 t+v

M) = gy 2o == DTV (),

sS=a

fort € Ngpn_vo.

Remark 1.4. Observe that the value of AYf(t) is a linear combination of f(a),
fla+1),...,ft+0).

Lemma 1.5 ([11, Lemma 2.3]). Let t and v be any numbers for which t®) and t(*=1)
are defined. Then Ait(®) = vt(v=1),

We use the following properties of the Laplace transform to derive the expression
for the Green’s function related to Problem (1.3)—(1.2).

Lemma 1.6 ([5, Lemma 2.1]).
I (v)

SU

Ryt (1079 () =

Lemma 1.7 ([5, Lemma 2.2]). If p > 0 and m —1 < p < m, where m denotes
a positive integer and f is defined on N _,, then

(1.4)

Ry (B f) (5) = By (1) ) = 3 57740 (b2 )| o )
k=0
Lemma 1.8 ([5, Lemma 2.4]).
Ry (f*u-29)(s) = (s+1)" " Ryz (f) () Ru2(9) (5), (1.6)
where ,
Frong®= 3 flt—s+v-2)g(s) (L7)
s=v—2

is the convolution product of two functions defined on N, _s.
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Definition 1.9. The two parameter delta discrete Mittag—LefHler function is defined by

k — 1)(ka+p-1)
eag(\t—a) = Z)\k —athkatf-l)

[(ka + B) ’
fora>0,5€Rand t € N,.
Observe that
oo
ko + f — 2)ket8-1)
as(X, —1) = Ak( =0.
cas(d—1) kZ:O T (ka + B)

Clearly, if |A| < 1, then eq (A, 0) = 75 Also,

kka+6 Yhatf-1) L, _a) B
Cap(M1) = ZA T'(ka + B) _;A(kwrﬂ)_(l—%)ﬁ(l—k)'

Remark 1.10. Using D’Alembert’s Ratio test, one can easily check that the above
function converges for all |A\| < 1 and diverges for |A| > 1 ([23, Theorem 6]).

2. CONSTRUCTION OF THE GREEN’S FUNCTION

In this section we will construct the Green’s function related to Problem (1.3)—(1.2),
following the approach given in [9]. We point out that, despite the sequence of steps
is the same in both papers, the content in each step is quite different. In particular,
since the delta discrete Mittag-Leffler function will be used, along all the section we
assume that |a| < 1, in order to ensure its convergence by the characterization given
in Remark 1.10. Such restriction is not assumed on [9], where the expression of the
Green’s function is valid for any real o that is not an eigenvalue of problem (1.1)—(1.2).
Moreover, on the contrary to reference [9], in which the expression of the Green’s
function comes from finite sums, the obtained expression of the Green’s function for
problem (1.3), (1.2), as we will see in the sequel, is given as a combination of series
of infinitely non zero terms. At any case, it is important to point out that, despite
the implicit character of equation (1.3), we can have an explicit expression of the
solution by means of the expression of the Green’s function. These two facts are not
incompatible. Even more, this method of solving equation (1.3), (1.2) allows us to
have an explicit expression of the solution of an implicit problem.
First, from (1.5), we have

Ro [A%y(1)] (s) = s"Ru—2 [y(t)] (s) — sA — B, (2.1)

where
A=y(v-2) (2.2)

and
B=(1-v)ylv—2)+y(v-1).
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Denote by Y1 (t) = y(t + v — ). Then,

[e%e] t+1
Rabolo= > (57) v

t=p—1

_ f: (Si1>tv+u+1 ”

t=v—1

o0

A <Si1>t+1y(t)

t=v—1

i (i1)+ y(t) - (sil)v_2+ly(v—2>]

= (s4+ D)V Ru_z [y(®)] (s) — (s + 1) y(v - 2).

— (5 4 1)1)—}1.

Next, from (1.5) we have

Ry [A"y(1)] (s) = 8" Ry [y()] (s) — [A" " y(t)],_, - (2.4)

Using (2.3) and (2.4), we obtain

Ro [A"Y1(2)] (s)

=s'R,_1[Yi(1)] (s) — [A* 1y (t)}tzo (2.5)
=" [(s + 1)V M Ru2 [y(1)] (s) — (s + 1) Fy(v = 2)] = [A* " (1)],_, -
Now, consider
[Au—lyl(t)]tzo _ [A*(lfu)yl(t)] .
[ ; taom
- e X e-s-ntenG
L s=pu—l t=0
t=(—n) (2.6)
= ﬁ Z (t—s—1)3 P Vy(s+ v — ,u)]
L s=p-1 t=0
= T 1 Pute =)

=ylv—-1)=B—-(1—-v)A.
Using (2.2) and (2.6) in (2.5), we deduce

Ro [AMY1(2)] (s)
— (s 1) Ry g [y(1)] (s) — (s + 1) A — B+ (1—)A 2.7)
=st(s+1)" *Ry_a [y(t)] (s) + [(1 —v) — s*(s + 1) "#] A— B.
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Denote Hy(t) = h(t +v — 1). Then, from (2.3), we obtain that
Ro [Hy (1)) (5) = (5 + 1)~ Ry [h(8)] (5) — h(v —2). (2.8)

By applying Ry to each side of (1.3) and employing (2.1), (2.7) and (2.8), we obtain

(I—v)—st(s+ 1) M A- B]

—[s"Ro—2[y(D)] (s) —sA = Bl +a [8“(8 + 1" Ry a[y(8)](s)
+[(
= (s +1)" "Rz [2(t)] (5) — h(v —2).

Rearranging the terms gives us

(s — as”(s + 1)") Ry_z [y(1)] (s)
:(s+a(1—v)—as“s+1 ") A
+(1—a)B—(s+1)""'R, o [h(1)] (s) + h(v —2).

This implies that

(s+a(l—v) —ast(s+1)'7H)

(sv — ast(s+ 1)v—H) A

Ry—a[y(t)] (s) =

(1-a)
7 = asi >+ D7) (29)

e R 0] )

e as#(ls T )
Denote Z(t) = y(t + n(v — 1)). Then,
RualZ0])(s) = 3 (5 )M 21
o \S +1
- b

) t_MZMH ( ; 1) " (2.10)

= (54 1) f: (S i 1>M y(t)

t=(n+1)v—npu—2
= (S + 1)nv_mLR(n+1)vfnp,72 [y(t)] (S)
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Note that using (1.4) and (2.10), we obtain

s ! 1 B Z s+ 1\
sV —asht(s + 1)v—r  sv-l {1 N (s+1)v*u} T ogu—1

S

= 1
_ k kv—k
- ];)a (S + 1) g g+ v—kp—1
_ i o (s 1 1)k Rt 1)v—tp—2 [t((k+1)u—ku—2)] (s)
P((k+1)v—Fku—1) (2.11)

k=0
B [t k(o — ) (D] ()
k=0 F'((k+1v—kp—1)
= + k(v — ) (G Dv—kn—2)
= R’U
kz TR I A

= Ry_2[ev—po—1(o,t —v+2)](s).
Similar to (2.10), we have
Ry 1 [Z(0)] (8) = (5 + )™ Ry sy [9(0)] (). (2.12)

Moreover, using (1.4) and (2.12) we obtain

[e%S) kv—ku o0
k(5 +1 kv—kp 1
o ( s ) Z S + 1) glk+1)v—Fkp
k=0 k=0

1
sV — ast(s+ 1)v—r

R 1yo—kp—1 [tEFDv—Rr=1] (5)
T((k+1)v—ku)

ot o=t [(t+ k(v ’u))((k-i-l)v—ku—l)} ()
0 C((k+1)v — kp)

o0
(t k _ ) (e Do—ku=1)
Zak + k(v — 1)) 5

Ozk(S + 1)l~w—ku

I
Mg =l
|

b
Il
o

M

>
Il

|
:U

v—1

((k+1)v—kup)
o0 ((k+1)v—kp—1)
) ] .

(2.13)

—Rv2

(t+ k(v —
Z“k T((k+ 1)v — kp)

<k (k1) o—kpu—1)
ji-o lz ak + k(v —p))
k=0 t=v—2

I((k+ v —kp)

> L (t+ k u))((kﬂ)vflw*l)
N kz ((k+1v—ku) ()

= Roa [eomulont —v+1)] (s).
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Denote Z;(t) = y(t + n(v — pu) — p+ 1). Then,

|
(]

oo 1 t—n(v—p)+p—1+1
Q+1) vt

t=(n+1)(v—p)—1 (214)
[e'e] 1 t+1
=S ()
t=(n+1)(v—p)—1
=(s+ 1)””’(”“)”HR(nH)(Wu)A ly()] (s).
Note that using (1.4) and (2.14), we obtain
sh(s+ 1)1+
sV —ast(s+ 1)v—H
(s 1)im 1
o sv 1—astv(s+1)v—r
(s 1)tm 1
U |: 7J M:I
kv—ku
> 1
_ k kv—(k+1)p+1 _
= Z a’(s +1)™ g S Do—(ht e (2.15)

o
o

(8 n 1)kv (k+1)pt1 R(k+1)v (k+1)p—1 [t((k-i-l)v—(k-i-l)ﬂ—l)] (3)
L((k+ v —(k+ 1))

w Ro—2 [(t +k(v—p)—p+ 1)((k+1)vfkuf1)] (s)
T((k+1)v—ku)

7 1

«

b
Il

0

_ R, i w4+ k(v — p) — p 4 1) (kDo —hku=1)
I((k+1)v —kp)

(s)
k=0

= Ryos [eompon(ont — v+ 2)] (s).
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Using (2.11), (2.13) and (2.15) in (2.9), we deduce

Ru-z[y(0)] (5) = [Ru-z[evpo-i(a,t = v+ 2)] (s)
+a(l —v)Ry—2 [ev—po(a,t —v+1)](s)
—aRy_sley—pu_pla,t —v+2)](s) }A
(1= a)Ru-zfevpulant — v+ 1)] (s)B
)

— (s + )" Rz [ev—po(at —v+ 1] (5)Ru—z [h(1)] ()
+ Ry [ev—po(a,t —v+1)](s)h(v —2)

)

which, by (1.6), can be written as

Ry—s [y(t)] (5) = |Ro—2[ev—po-1(a;t —v +2)](s)
+a(l —v)Ry_2[ev—pola,t—v+1)](s)
—aRy s lep—po—pla,t —v+2)](s)|A

]

+(1-a)Ry—2ev—pole,t —v+1)](s)B
— Ry—2 [ev—pu(o,t — v+ 1) %,_o hl(s)
+ Ry—2[ev—po(ot —v+1)] (s)h(v —2).

Apply to each side the inverse of R, _o, we obtain

y(t) = lev—po-1(at —v+2)+a(l —v)ey_po(a, t —v+1)

—aey_po—plot —v+ 2)}4
+(1—-a)ey—pola,t—v+1)B
—ep_pu(a,t —v+1)xy_gh+e,_pyo(a, t—v+1)h(v—2).

Thus, using (1.7), we have

y(t) = {ev,mv,l(a,t —v+2)+ ol —v)ey_po(a,t —v+1)
—ey_pyo—pla,t—v+2)|A
+ (1 —a)ey—po(a,t —v+1)B

- Z ev—pu(ot—s+v—2—v+1)h(s)

s=v—2

+ ey—po(a,t —v+1)h(v —2).
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That is,

y(t) = {ev,mv,l(a,t —v+2)+ao(l —v)ey_po(a,t —v+1)

—ey_pyp—pla,t —v+ 2)}14

(2.16)
¢
+(1-a)ep—po(a,t—v+1)B — Z ev—pw(o,t —s—1)h(s).
s=v—1
Using y(v — 2) =0 in (2.16), we have
0= |eyv—p,v—1(a,0) + a(l —v)ey_p (e, —1) — ey—pp—p(e,0)| A
v—2
+(1—-a)ey—po(a,—1)B — Z ev—pw(o,t —s—1)h(s).
s=v—1
That is,
1 o
0= — A.
{(1 —a) (1= 04)]
Using y(v +b+ 1) = 0 in (2.16) and taking A = 0, we have
v+b+1
0=01-a)ey—pv(a,b+2)B— z ev—po(e,v+b—s)h(s),
s=v—1
or
1 vb+1
B= _ -
T @5 S:zv; ev—pw(c, v +b—s)h(s)
1 o (2.17)
= T ajer @b 5D 5:;1 ev—pw(a, v +b—s)h(s).

Using (2.17) and A =0 in (2.16), we obtain

1
(= a)ew (e, b+ 2)
v+b

X Z ev—p,w(0, v+ b—s)h(s)

s=v—1

- Z ev—pw(o,t —s—1)h(s).

s=v—1

V= (1= a)eupuant =0+ )|
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Rearranging the terms, we obtain

v+b
ey pola,t—v+1)
y(t) = o (@b 12) S:Uz;l ev—pv(0,v+b—s)h(s)

— Z ev—pwl(e,t—s—1)h(s).

s=v—1

That is,

t
ev—pw(a,t—v+1)
y(t) = Z [ e:_uyv(a, ) ev—pu(,v+b—15)—ey_po(a,t—s—1)| h(s)

s=v—1

v+b
UV— [,V 7t_' 1
- Z [e pov(@ v )ev,u’v(am—i—b—s) h(s).

s=t+1 Cv—puv (0,0 +2)

Denote by
Li={(ts)iv—1<s<t<uv+b+1},

and
L={(ts):v—1<t+1<s<v+b}

Theorem 2.1. Assuming that |a| < 1, we have that Problem (1.3)—(1.2) has a unique
solution if and only if
ev—pola,b+2) #0.

Moreover, the expression for the related Green’s function, when |a| < 1, is given by

ev—p,v(a,t—v+1)
G(t,s) = {Wev_u,v(a’v +b—3)—ep_pulayt—s—1), (t,5) €I,

T (@ v b = 5), (t.5) € Iz
(2.18)
Further, the unique solution of the Problem (1.3)—(1.2) is given by
v+b
y(t) = Z G(t,s)h(s), tev—2,v+b+1]n,_,-
s=v—1

Remark 2.2. Consider (1.1). From Theorem 1.3, we have

1 t+v ( )
AVy(t) = AY_,f(t) = =—— t—s—1)vt teN 2.19
0 = AL = iy D (o) Vue), tete @19)

and

Afy(t+v—p—1)=A0 yy(t+v—p—1)
1 t+v—1

:F(—u) Z (t+v—p—s5—2)"""Vy(s), teNy. (220)

s=v—2
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Clearly, the value of AYy(¢) is a linear combination of y(v — 2), y(v — 1), ..., y(t + v)
and the value of A*y(t+ v — p — 1) is a linear combination of y(v — 2), y(v —1), ...,
y(t +v — 1). Thus, the unknown y(t 4+ v) is present only in the first term of LHS
of (1.1). Using (2.19) and (2.20) in (1.1) and rearranging the terms, we notice that
the unknown y(¢ + v) can be explicitly expressed as a linear combination of y(v — 2),
ylvo—1), .., y(t+v—1)and h(t+v —1).

Now, consider (1.3). From Theorem 1.3, we have

Aly(t+v—p) = ALyt +v—p)

t+v
- I‘(iﬂ) Z (t-l-v—,u_s—1)(_1’—1)y(8)7 t € Np. (2.21)

Clearly, the value of A*y(t + v — p) is a linear combination of y(v — 2), y(v —1), ...,
y(t + v). Since the unknown y(t + v) is present in both the terms of LHS of (1.3),

the fractional difference equation (1.3) becomes an implicit difference equation in the
unknown y(¢ + v) unlike the fractional difference equation (1.1).

s=v—2

3. PROPERTIES OF THE GREEN’S FUNCTION

In this section, we derive some sign properties of the Green’s function related to
Problem (1.3)—(1.2), which is given by expression (2.18). For this purpose, we will
prove the following preliminary results.

Lemma 3.1. Assume 0 < p < 1 < v < 2 such that v —p—1 2> 0 and t €
[v—1,v4+b—2]n,_,. For each 0 < a < 1, denote

t(v 3) & k t+kv—k},&)(kv kpu+v—3)
toa)=(v—
Then, there exists a unique a(t) € (0, 1) such that
g(t,at)) =0, tev—1v+b—2n,_,-

(3.1)

Proof. First, we point out that since the function e,_, (a,t — v + 1) converges for
all o] <1 and

kAt2(t 4+ kv — k’u)(kufk,quvfl)
I'(kv — kp +v)

NE

Afev_u,v(a,t—v—kl) = o

~
Il
=

L (t +ky— ku)(kv—ky—i—v—l})
L(kv—kp+v—2)

(07

1t

e

—~ O

o0

tU 3) +Z k t-i—kv—ku)(kv kp+v—3)
[(kv—ku+v—2)

= g(t,(){),

it follows that the function g(¢, ) also converges for all |a| < 1.
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Consider

t(v=3) L(t+1)

9(6:0) = (v =5 —5 = =D T rw = 1

Clearly, for each t € [v — 1,v + b — 2]y

v—1"

r't+1)
Ft—v+4)T'(v—-1)

>0,

implying that g(¢,0) < 0.
Moreover,

L(t+1) (t+kv—ku+1)
1: —2 .
g(t,1) = (v )I‘(t—v+4 T(v—1) +Zrt—u+4 )T (kv — kp+ v —2)

Note that since ¢t > v — 1, then

T(t+kv—ku+1) < T(kv — kp +v)
kv —ku+v—2) ~ T(kv—kp+v—2)
=(kv—kp+v—2)(kv—ku+v-—1).

Thus,
T(t+1) > (t+ kv — kp+1)
t1)=(v—2
9(t:1) = (v )F(tfv+4 T(v—1) +;F t—u+4 )T (kv — kp+v —2)
rt+1) (kv —kp+v —2) (kv — kp+v—1)
>(v—2
z )F(t—v+4 T(v—1) +kZ:1 T(t—v+4)
> 0.
Consider (kv—k )
9 e} ¢ kv —k v—kp+v—3
91 0y =3 kat-1 EERV R0
da T(kv — ku+v —2)

k=1

Foreacht € [v—1,uv4+b— 2]y a >0 and k € Ny, we have k=1 > 0, and

v—17?

(t + kv — k) (kv—kpto=3) B T(t+kv—ku+1)
T(kv—kp+v—2)  T{Ht—v+HT(kv—kp+v —2)

>0,

implying that
9g
Oa
Then, there exists a unique a(t) € (0,1) such that

(t,a) >0, forala>0andtev—1,v+b—2y,_,.

gt,a(t) =0, tev—1Lv+b—2y

v—1"

The proof is complete. O
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Now, we define

of = min
te[v—1,v+b—2]y

a(t).

v—1
Clearly, a* > 0. Throughout, we assume that the parameter « satisfies o € (0, a*).

Lemma 3.2. Assume 0 < p <1< v < 2 such that v — p— 1> 0. Then the following
assertions hold.

(1)
t(v=1)
I'(v)
foralla>0andtev—1,v+bln

(i)

0<

<ey—pwlot—v+1)

v—1"

t(v—2)
0< m < Atev,ﬂ,v(a,t — v+ 1)
forall0 <a<1landt € [v—1,v+b—1]n,_,. Consequently, €, (o, t—v+1) is
an increasing function with respect to t for all0 < a <1l andt € [v—1,v+bly,_,-
(iil) Arey—p,o(a,t—v+1) is a decreasing function with respect to t for all0 < a < ao*
andt€v—1Lv+b—1]n
(iv)

v—1"

ev—polet—s—1) <ey_,(a,t—v)

forall0 < a <1 and (t,s) € I;.
(v)

Avey_po(a,t —s—1) > Aey—pyo(a, t —v)
forall0 < a < a* and (t,s) € I;.

Proof. For each t € [v—1,v + b]y,_,, consider

0 t+kv—Fk (kv—kp+v—1)
eu,u,v(a,t—v—i-l):Zak( + kv U)

= I(kv — kp +v)

t(U—l) e t ko — k (kv—kp+v—1)
_ +3 ok (t+ kv —kp)

T'(v) = I(kv —kp+v)
. T(t+1)
S T(t—-v+2)(v)

Siak D(t+ kv —kp+1)
It—v+2)T(kv—kp+v)

Clearly, for each t € [v — 1,v + b]y,_, and k € Ny, we have o* > 0,

v—1

r't+1)
I't—v+2)I'(v)

>0,
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and
D(t+ kv —kp+1)
It —v+2)T (kv —kp+v)

>0,

implying that
tv—=1)

0< W < 6U7H7U(()é,t — v+ 1)

The proof of (i) is complete.

Now, for each t € [u — 1,v+ b — 1]y consider

v—17

Aey_pola,t—v+1)
_ = At + kv — ku)(kv—ku+v—1)

|
J

k=0 L(kv — kp +v)
_ i oF (kv — kp4v — 1)(t + kv — kp)kv—kptv=2)
B T(kv — kp + v)

- kv —kp+v—1)

t(v 2) > k t—l—k}’(}—ku)(kv kp+v—2)
T(v—1) Z (kv —kp+v—1)

B F(t+1 +Z . Tt + kv — kp+ 1)
S I(t—-v+3)(v-1) Ft—v+3)(kv—ku+v—1)

Clearly, for each t € [v — 1,v+b— 1]y,_, and k € Ny, we have o > 0,

T(t+1) -
Frt—v+3)I'(v—-1) ’
and
r — 1
(t+kv—Fku+1) >0,

't —v+3)I'kv—kp+v—1)

implying that
+(v—2)
0< m < Atev—/t,v(a7t — v+ 1)
Thus, ey—po(a,t — v + 1) is an increasing function with respect to t for
t € [v—1,v+bn,_, and the proof of (ii) is complete.
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Now, for each t € [v — 1,v + b — 2]y consider

v—17
A?ev uv(a t—v+1)

_z LB g
(kv —kp +v)

w (kv —kp4v —1) (kv — kp +v — 2)(t + kv — kp)Fv—hrtv=3)

(67

tqu

P T(kv — kp+v)
B i ak (t 4+ kv — ku)(kv—ku-i—v—?))
pors T(kv—kp+v—2)
t(u 3) e kv — k,u)(lcu kp+v—3)

kt-l-
T(v—2) Jrz I(kv —kp+v—2)

=g(t,a) < g(t,a ) =0,

implying that Asey_p.(a,t — v + 1) is a decreasing function of ¢ for
te€v—1,v+b—1]y,_,. Thus, the proof of (iii) is complete.
The proofs of (iv) and (v) follow from (ii) and (iii), respectively. O

Theorem 3.3. Assume 0 < < 1,1 <v <2 suchthatv—p—1>0anda € (0,a").
The Green’s function G(t,s) defined in (2.18) satisfies

1. Glv—2,8) =0 for each s € [v—1,v+ by, ,
2. Glu+b+1,5)=0 for each s€ [v—1,v+b+1]n,_,-
3. G(t,s) >0 for each (t,s) € [v—1,v+b]n,_, X [v—1,v+b]y

. max G(t,s) = G(s,s) for each s € [v—1,v+ by
te[v—1,u+bln, _,

v—1°

v—1"

Proof. For each s € [u—1,v + ]

Ny_1>s

€v—p,v(o, —1)
ev—pu(0,b+2)
The proof of (1) is complete. For each s € [v —1,v + b+ 1]n,_,,
ev—pv(0,b+2)
€v—po(0,b+2)
The proof of (2) is complete. Assume (¢, s) € I5. It follows from Lemma 3.2(i) that
ev—pola,t—v+1)

ev—p,v(0,b+2)

and from Lemma 3.2(iii) that for the first order backward difference of G(t, s) with
respect to ¢t we have

Gv—2,s) = €v—pw(,v+b—5)=0.

Gluv+b+1,s) = ev—pw(,v+b—5)—e,_pu(,v+b—15)=0.

G(t,s) = ev—ppo(e,v+b—15) >0,

ev—po(at—v+1)
ev—p,v(0,b+2)
Ateu—u,v(aa t—v+ 1)

= _ b— 0
Cv—p,v (Oé, b+ 2) oy (07 v S) -0

AtG(t, S) = At

ev—po(a,v+b—s)
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implying that G(t, s) is an increasing function of ¢ from ¢t = v —2 to t = s — 1. Assume
(t,s) € I. It follows from Lemma 3.2(iv) that for the first order backward difference
of G(t,s) with respect to ¢ we have

ev—pw(ot—v+1)
€v—po(0,b+2)
_ Avey pplat—v+1)
a Cv—p,v (aa b + 2)
ev—pw(e,v+b—3s)
= : A v—pwl0,t — 1)—-A v—pwla,t—s—1
ev—;L,v(a;b+2) tCv—p, (a v+ ) tCu—p, (a s )

<Aeypo(ot—v+1) = Areypo(ot —s—1) <0,

AtG(t, 8) = At

Copw(,v+b—5)—ey_po(at—s—1)

Co—pw(,U+b—5) — Avey_po(a,t —s—1)

implying that G(¢, s) is a decreasing function of ¢ from ¢t = s to t = v + b+ 1. Since
G+b+1,s) =0foreachs € [v—1,v+b+1]y, ,, it follows that G(¢,s) > 0 for each
(t,s) € [v—1,v+bln,_, X [v—1,0+b]n,_,. The proof of (3) is complete. It follows
from (3) that

v—1

max G(t,s) = max{G(s — 1,s),G(s,s)} (3.2)
tE[ufl,v+b]Nv71

for all s € [v—1,v + b]n,_,. Moreover,

ev—p,v(, s —v)

1.5 =
G(s ) ev—pw(a,b+2)

ev—pw(o,v+b—s), (3.3)

and
ev—pw(e,s —v+1)
ev—pu(,b+2)
ev—pw(e,s —v+1)
= : v—,v ) b— -0
eu—u,v(aa b+ 2) o (a v S)
ev—pw(e,s —v+1)

= ev_puvla,v+b—s),
Cv—p,v(0,b+2) pol )

G(s, )

Co—pw(0U+b—5) —ey_p(a, —1)

for s € [v—1,v+ b]y,_,. It follows from Lemma 3.2(ii) that
G(s—1,s) <G(s,s), se€v—1v+Dbln, -
The proof is complete. O

Lemma 3.4 ([19]). Let {an}tnen, and {bp}nen, be real numbers and let the power
series

A(z) = Z anz™ and B(x)= Z bpa™
n=0 n=0

be convergent for |x| < r. Then, if b, >0, n=0,1,2,..., and the sequence (Z—") N
"/ neNy

is (strictly) increasing (decreasing), then the function ggg is also (strictly) increasing

(decreasing) on [0,71).
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Lemma 3.5. Assume 0 < u <1, 1 <v <2 such thatv—pu—1>0, a € (0,a") and
a, b be two real numbers such that v < a < b. Then,

ev—pv(,v—1—5)
ev—po(a,v+b—s)

is a decreasing function with respect to s € [0,v — 1)y.

Proof. Take s € [0,v — 1)y. We have

o0 S _ k(o= u—1)
B y(U—1—s+k(w—p)+v—1)
ev_u,v(a,v—l—s)—Za k(v — 1) + 0) )

k=0

and

2 L (wHb—s+Ek(v—p)+ov—1)kemmte-1)
ev_povla,v+b—3s)= aF ,
ol =2 Dk — ) + 1)
are convergent for |a| < 1. Clearly,
oF (V+b—s+k(v—p) +v—1)kEv-pto=1)
T(k(v—p) +v)

One can check that the sequence

>0, k=0,1,2,...

(v—1=s5+Fk(v—p)+v—1)ko=ptv-1)
(V+b—s+k(v—p)+v—1)Ev-pto-1)

is a decreasing function for s € [0,v — 1)y. Then, by Lemma 3.4,

ev—pv(,v—1—25)

ev—po(a,v+b—s)
is a decreasing function with respect to s € [0,v — 1)n. The proof is complete. O

Theorem 3.6. Assume 0 < p<1,1<v <2 suchthatv—p—1>0and o€ (0,a").
Then, there exits v € (0,1) such that

3 > — .
crgntlgdG(t, s) > Y e % G(t,s) = vG(s,s), (3.4)

forsev—10+bly, ,. Here c ="t and d = W.

Proof. 1t follows from Theorem 3.3 that

max G(t,s) = G(s,s),

te[v—1,u+bln, _,

for each s € [v—1,v + ]y, _,. Consider now

G(t,s) {ev,‘,v(a,t—v—‘rl) _ ev—_p,v(a,t—s—1)e, ;o (,b+2) (t,S) c ]1’

ey vl(a,s—v+1 ey vl(a,s—vtl)e, o (a,v+b—s)?
w0, My ) K )

ev—po(atzvtl) (t,s) € I
, .

ey—p,v(a,s—v+1)?
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For (t,s) € Iy and ¢ <t < d, we have

G(t,s) ey pula,t—v+1) < ev—pw(o,e—v+1)

G(s,8) ep—polys—v+1) 7 ey_pola,b+1)

For (t,s) € I, we know that G(¢, s) is decreasing with respect to ¢, hence we have that

G(t,s) ey puloyt—v+1) ev—po(at—s—1)ey_p (e, b+2)
G(s,8)  ep_pola,s—v+1) ev_,w(oz7 s—v+1)e,_po(o,v+b—s)
S G- ol dfv+1) ev—po(a,d—s—1)ey—p (o, b+2)
= eU pol(a,s —v+1) ev,u,v(a,s —v+1)ey_po(a,v+b—s)

Now, for any s € [v — 1,v + b]y, _,, we define

(s) .
S =
v ev—pw(e,s —v+1)
ev—po(e,d—s—1)e,_y (0, b+ 2)
eompp(@d —v 1) = =5 e (o ’U+bi<9)
v—p, v\,
By Lemma 3.5,

ev—pw(e,d—s—1)
ev—po(a,v+b—s)

is decreasing of with respect to s for 0 < s < d — 1. Hence

1 eo—pov(a,d—v)e,_, (o, b+ 2)
> v 7d_ 1 _ Hy ) Hy )
v(s) 2 ev—pol(a, s —v+1) {e pole v+l) ev—pw(e,b+1)
1 ev—pw(od —v)ey,_po(

a,b+2)}

T ep—pola,d—v+1)
So this implies

G(t,s) S 1
T eppoloyd—v+1)

61)—11)(04 dfv)ev—iv(a b+2):|

Ney_po(la,d—v+1) — BUL BU D )

oo ) o b+ 1)
Thus, we have

G(t a G(t,s) =G
Join, (t, 5)—7te[v7§1}vfb}NM (t,s) = vG(s,s),
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for s € [u—1,v+ by where

v—17

. 1
V= min { ev—pw(e,d—v+1)

[ev_mv(a, d—v+1)

3 evpol(a,d —v)ey,_p (e, b+ 2)}
ev—po(a,b+1) ’

ev—pola,c—v+1)
ev—pw(ob+1)

) ! ev—p(a,d—v)ey_p (e, b+ 2) ev—po(a,c—v+1)
= min —
eoppla,d—v+1ey_po(a,b+1)] " ey_po(a,b+1)

Since
ev—pola,c—v+1) <1
€v—p,v(e,b+1)
and
ev—pola,d—v)e,_p (e, b+ 2)
) ) > ()7
ev—pw(o,d—v+1)ey_pyo(a,b+1)
it is immediate to verify that 0 < v < 1. O

4. EXISTENCE OF SOLUTIONS OF NONLINEAR PROBLEMS

In this section we will apply the following Krasnosel’skii—Zabreiko fixed point theorem
to obtain nontrivial solutions of the following nonlinear equation

—AYy(t) + aAty(t+v—p) = ft+v—-1Lyt+v-1)), tel, (4.1)

coupled to the boundary conditions (1.2).

Here we assume that f: [v — 1,v +b]y,_, x R = R is a continuous function.

—1

Theorem 4.1 ([17]). Let X be a Banach space and F : X — X be a completely
continuous operator. If there exists a bounded linear operator A : X — X such that 1
is mot an eigenvalue and

o IF0) =AW _
lyll =00 Iyl
then F has a fixed point in X.

We will apply Theorem 4.1 to a nonlinear summation operator whose kernel
is G(t, s). The arguments are in the line to the ones used in [14].
In this context, let the Banach space (X, | -||) be defined by

X:={h:[v=2,v+b+1]n,_, = R}, (4.2)



188 Alberto Cabada, Nikolay D. Dimitrov, and Jagan Mohan Jonnalagadda

with norm

hl|| = h(t)]. 4.3
Ihll =, e A (43)

Clearly, y € X is a fixed point of the completely continuous operator F' : X — X
defined by

v+b
(Fy) (1) := > Glt,5)f(s,y(s)), t€v—20+b+1]n,_,. (4.4)

s=v—1

In order to ensure the existence of solutions of (4.1)—(1.2), we now apply Theo-
rem 4.1 to operator F' defined in (4.4) and to an associated linear operator.

Theorem 4.2. Assume that |o| <1, f:[v—1,v+bn,_, X R = R is continuous and

that for any t € I the following property holds:

—1

t -1
fm LEEVTLD
|r|—00 r
If
1
Im(t+v—1)|<d:= s , foralltel,
ma; G(t,s
te[v—2,v+l§i—1]Nv_2 S:ZU_1| ( )\

then the boundary value problem (4.1)—(1.2) has a solution y, and moreover, y Z 0
on[v—2,v+b+1]n,_,, when f(t,0) # 0 for at least one t € I.

Proof. Let be the Banach space (X, || - ||) and the completely continuous operator
F: X — X defined as above in (4.2), (4.3), and (4.4), respectively.
Corresponding to (4.1)—(1.2), we consider the following linear equation

—Ay(t) +aAty(t+v—p)=mit+v-Dylt+v-—1), tel, (4.5)

coupled to the boundary conditions (1.2).
We define a completely continuous linear operator A : X — X by

v+b
(Ay) (t) == Z G(t,s)m(s)y(s), tev—2,v+b+1]n, ,-

s=v—1

Clearly, solutions of (4.5)—(1.2) are fixed points of A, and conversely.
First, we show that 1 is not an eigenvalue of A.
To see this, we consider two cases:

(a) m(t+v—1)=0forallt eI, and
(b) m(t+wv —1) # 0 for at least one t € I.

For (a), if m(t + v —1) =0 for all ¢ € I, since the boundary value problem (4.5)—(1.2)
has only the trivial solution, it is immediate to verify that 1 is not an eigenvalue of A.
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For (b), if m(t +v — 1) # 0 for at least one ¢t € I and (4.5)—(1.2) has a nontrivial
solution, then |ly|| > 0. And so, since G(-, s) is not identically zero on [v—2, v+b+1]y
we have

v—2"

v+b
= ||Ay|| = max G(t,s)m(s)y(s
Il = vl =, mae | 3D Gl sl ()
v+b
<d max G(t,s s
D (G )
v+b
<d max G(t,s)| = ,
<dlbll,,, s, 3 (G =l
a contradiction.
Again, 1 is not an eigenvalue of A.
Our next claim is that
IFG) AW _
llyll—o0 [yl

In this direction, let € > 0 be given. Now, for any ¢ € I be given, we know that

lim f+v—1,7)

i . =m(t+v—1),
which implies that there exists an M (t+wv—1) > 0 such that, for all |r| > M(t4+v—1),
lft+v—1,7r)—mt+v—1)r <elr|. (4.6)
Now, let
Ny = r?g;({M(t +v—-1)}>0,

N = t+ov—1
\ré?v?f‘tez{'f( +v—1,7)},

and let L > Ny be such that

N +dN; e
L
Next, choose y € X with |ly|| > L. Now, for s € [v—2,v+ b+ 1]y, _,, if |y(s)] < Ny,

we have
[£(s:9(s)) = m(s) y(s)] < [f(s,y(s))| +d [y(s)] <N +d Ny <el <ellyl.
On the other hand, if |y(s)| > N, we have from (4.6) that

[£(s:9(s)) = m(s) y(s)| <ely(s)| <ellyll-
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Thus, for all s € [v—2,v+ b+ 1]y,_,, we deduce that

v—2)

[£(s,y(s)) —m(s)y(s)| < ellyll- (4.7)

It follows from (4.7) that, for y € X with |y|| > L,

v+b

P A6 =, w3 G v(s) — mlo) )
v

< By, 2 (G sy(s) — mls) )

v+b 1
<elbll,, max, 3 (GG =clul g
Therefore,
1F(y) = AW

im =0.
llyll—oo Iyl
By Theorem 4.1, F' has a fixed point y € X, and y is a desired solution of (4.1), (1.2).

Moreover y 20 on [v — 2,v + b+ 1]y,_,, when f(¢,0) # 0 for at least one ¢t € I and
the proof is complete. O

Remark 4.3. Notice that under the hypotheses of previous existence result we cannot
ensure that the Green’s function G has constant sign on its square of definition.

5. MULTIPLICITY RESULTS

In this section, for completeness of our work, we will briefly establish some results
concerning the existence of at least two nontrivial solutions of the nonlinear Dirichlet
Problem (4.1)—(1.2), based on Krasnosel’skii’s fixed point theorem.
Assume that f:[v— 1,0+ b]n,_, X R = R is a continuous function and f # 0.
Let B represents all maps from [v — 2, v + b]NW2 into R, equipped with the standard
maximum norm ||-||. Clearly, B is a Banach space. Define the cone

K = {y € B :y(t) >0, tgm y(t) > Iyll},

]
where ¢, d and 7 are defined in Theorem 3.6 and operator T is given by

b+1
(Ty) (t) :=>_Gt,s)f(s+v—Ly(s+v—1), tev—2v+b+1,_,.
s=0
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It is trivial to show that T': K — K. Denote

t t
fo= lim min M, f° = lim max ( 7y),

y—0+ te[v72,v+b]NU72 Yy y—0+ tG[U*Z,U+b]NU72 Yy

t t
foo = lim min 1 ’y), f° = lim max ( ’y).

Y—00 tG[U727v+b}NU72 Yy Yy—00 te[U*Q»UH’]NU,Q Yy

Set
1 1
U —" and p=

Syt ’

3 G(s,s) el e (1) )

where |-] and [-] are the usual so-called floor and ceiling functions. Moreover, assume
that the following conditions hold:

(H1) There exists p > 0 such that f(t,y) < np for all 0 < y < p and t €
[v—2,0+ b]NU%.

(H2) There exists p > 0 such that f(t,y) > up for all yp <y < p and t € [¢,d].

(H3) fo > pand fo > p.

(H4) f° <mand f>° <n.

Our main result in this section is as follows:

Theorem 5.1. If f satisfies (H1) and (H3), then the nonlinear Dirichlet Problem
(4.1)~(1.2) has at least two positive solutions y1 and yz with 0 < ||ly1|| < p < ||y2||-

Proof. We omit the proof since the arguments are standard for Green’s function G,
satisfying (3.4). We refer [12] to the reader for more details. O

Theorem 5.2. Suppose that f satisfies (H2), (H4) and f >0 fort € [v — 2,0 +b]y .
Then, the nonlinear Dirichlet Problem (4.1)—(1.2) has at least two positive solutions y;
and y2 with 0 < ||y1|| < p < |ly2]-

Proof. Again, we omit the proof. One can check [12] for more details. O

Remark 5.3. We point out that one can take weaker conditions, namely f° = 0 and
f°° =0 and the above results still hold.

As a direct consequence, one can obtain the following results

Theorem 5.4. Suppose that fo > p and f* < n, then the nonlinear Dirichlet Problem
(4.1)—(1.2) has at least one positive solution.

Theorem 5.5. Suppose that foo > pn and O < n, then the nonlinear Dirichlet Problem
(4.1)—(1.2) has at least one positive solution.
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6. EXAMPLES

In this section, we provide two examples to demonstrate the applicability of established
results.

Example 6.1. Consider the boundary value problem (4.1), (1.2) with a =0, b =5,
v=15u=0.5 a=0.5 and

fE+v—-1,r) = Ce (tHv=17, ’tanfl (t+v—1)>%r+ 1)3)| + elttv=D? |r + 1],
with C' > 0. Clearly,

t -1
m(t+v—1)= lim Jlttv=1r) = Cn e~ (tHv=1)? foralltel.

|r|—o00 r 2

The Green’s function associated with the boundary value problem is given by

e1,1.5(0.5,t—0.5)
G@J):{I;iwwmq;d&&65—ﬁ—euﬁwﬁt—s—n7(Lﬁé[h

e 0.5,t—0.5
esOE) ) 1 5(0.5,6.5 — 5), (t,s) € I,
(6.1)
where
L ={(ts):05<s<t<75}
and
IL={(t,s): 05 <t+1<s<6.5}.
Since 1
d= = 0.241342,

6.5
max Z |G(t, s)]

t€[=0.5.75)_ 5 57

by Theorem 4.2, we can ensure that the boundary value problem has a nontrivial
solution defined on [—0.5,7.5]n_, . for all

2d
0<C < ==e%25 ~0.197282.
iy

Example 6.2. Consider the boundary value problem (4.1), (1.2) with a =0, b = 5,
v=15u=0.5, a=0.5 and

P+ 0= 1) = [lyt +v = D) + [yt + v - )]

with ¢ < g Here
- 1
= %5

2. G(s:9)

5s=0.5
Clearly, fo = foo = +00. Taking p =1, we have that

3
2

ﬂtMZCb%+ﬁ}SC@%+p}<np
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for all0 <y <pandt e [-0.5,75]n_,,. Thus, all conditions in Theorem 5.1 are
satisfied. Therefore, the nonlinear Dirichlet Problem (4.1)—(1.2) has at least two positive
solutions y1 and yo with 0 < |jy1]| < p < |ly2]|-
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