PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Single-domain nanoparticle magnetic power losses calibrated with calorimetric measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to establish a numerical model for calorimetric measurements of magnetic fluids under an alternating magnetic field (AMF). The modified linear response theory (LRT) and Stoner-Wohlfarth theory were applied to investigate heat dissipation from the ferrofluid. The hysteresis area was calculated once the magnetic field value, applied frequency and number weighted distribution of the nanoparticles were known. Magnetic field distribution was calculated for the setup used for performing calorimetric experiments, and field dependent relaxation times were employed to calculate the specific loss power (SLP) in the sample. Subsequently, the results of numerical investigation were compared with the measurements obtained from calorimetric experiments. The Zeeman energy condition was used to delimit the area where LRT is valid. The numerical model calibrated with the calorimetric measurements allowed for the diffusion coefficient and the parameters involved in power dissipation in a ferrofluid to be determined. These parameters were then used to compute total heat dissipation and temperature distribution within the sample. The numerical model matching the calorimetric measurements of heat dissipation from ferrofluids enhanced the reliability of simulations.
Rocznik
Strony
509--516
Opis fizyczny
Bibliogr. 23 poz., rys., wykr., tab.
Twórcy
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Science, 13 Akademicka St., 20-950 Lublin, Poland
autor
  • Warsaw University of Technology, Faculty of Electrical Engineering, 75 Koszykowa St., 00-662 Warszawa, Poland
  • Department of Bioengineering and Department of Computing, Royal School of Mines, Imperial College London, London, SW7 2AZ, United Kingdom
Bibliografia
  • [1] W.J. Atkinson, I.A. Brezovich, and D.P. Chakraborty, “Usable Frequencies in Hyperthermia with Thermal Seeds”, IEEE Trans. Biomed. Eng. 31(1), 70–75 (1984).
  • [2] P. Gas and A. Miaskowski, “Specifying the ferrofluid parameters important from the viewpoint of Magnetic Fluid Hyperthermia”, Selected Problems of Electrical Engineering and Electronics (WZEE), 1–6 (2015), DOI: 10.1109/WZEE.2015.7394040.
  • [3] S.Y. Wang, S. Huang, and D.A. Borca-Tasciuc, “Potential sources of errors in measuring and evaluating the specific loss power of magnetic nanoparticles in an alternating magnetic field”, IEEE Trans. Magn. 49(1), 255–262 (2013).
  • [4] R.R. Wildeboer, P. Southern, and Q.A. Pankhurst, “On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials”, J. Phys. D: Appl. Phys. 47, 495003 (2014).
  • [5] S. Huang, S.Y. Wang, A. Gupta, D.A. Borca-Tasciuc, and S.J. Salon, “On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field”, Meas. Sci. Technol. 23, 035701 (2012).
  • [6] A. Skumiel, T. Hornowski, A. Jozefczak, M. Koralewski, and B. Leszczynski, “Uses and limitation of different thermometers for measuring heating efficiency of agnetic fluids”, Appl. Therm. Eng. 100, 1308–1318 (2016).
  • [7] P. Gas and E. Kurgan, “Cooling effects inside water-cooled inductors for Magnetic Fluid Hyperthermia”, 2017 Progress in Applied Electrical Engineering (PAEE), 1–4 (2017).
  • [8] A. Attaluri, C. Nusbaum, M. Wabler, and R. Ivkov, “Calibration of a quasi-adiabatic magneto-thermal calorimeter used to characterize magnetic nanoparticle heating”, J. Nanotechnol. Eng. Med. 4(1), 011006 (2013).
  • [9] F. Soetaert, S.K. Kandala, A. Bakuzis, and R. Ivkov, “Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles”, Sci. Rep. 7, 6661 (2017).
  • [10] R.E. Rosensweig, “Heating magnetic fluid with alternating magnetic field”, J. Magn. Magn. Mater. 252, 370–374 (2002).
  • [11] G. Vallejo-Fernandez, O. Whear, A.G. Roca, S. Hussain, J. Timmis, et al., “Mechanisms of hyperthermia in magnetic nanoparticles”, J. Phys. D Appl. Phys. 46, 312001 (2013).
  • [12] C.L. Dennis, K.L. Krycka, J.A. Borchers, R.D. Desautels, J. Van Lierop, et al., “Internal magnetic structure of nanoparticles dominates time-dependent relaxation processes in a magnetic field”, Adv. Funct. Mater. 25, 4300–4311 (2015).
  • [13] G. Vallejo-Fernandez and K. O’Grady, “Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications”, Appl. Phys. Lett. 103, 142417 (2013).
  • [14] C.L. Dennis and R. Ivkov, “Physics of heat generation using magnetic nanoparticles for hyperthermia”, Int. J. Hyperther. 29(8), 715–729 (2013).
  • [15] H. Mamiya, “Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia”, J. Nanomater. 2013, 752973 (2013).
  • [16] H. Mamiya and B. Jeyadevan, “Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields”, Sci. Rep. 1, 157 (2011).
  • [17] M. Boskovic, G.F. Goya, S. Vranjes-Djuric, N. Jovic, B. Jancar, et al., “Influence of size distribution and field amplitude on specific loss power”, J. Appl. Phys. 117, 103903 (2015).
  • [18] C. Tannous and J. Gieraltowski, “The Stoner-Wohlfarth model of ferromagnetism”, Eur. J. Phys. 29(3), 475–487 (2008).
  • [19] J. Carrey, B. Mehdaoui, and M. Respaud, “Simple models for dynamic hysteresis loop calculations of magnetic singledomain nanoparticles: Application to magnetic hyperthermia optimization”, J. Appl. Phys. 109, 083921 (2011).
  • [20] A. Miaskowski, B. Sawicki, and A. Krawczyk, “The use of magnetic nanoparticles in low frequency inductive hyperthermia”, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31(4), 1096–1104 (2012).
  • [21] A. Miaskowski, B. Sawicki, and M. Subramanian, “Identification of diffusion coefficients in heat equation on the base of non-adiabatic measurements of ferrofluids”, Proceedings of 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), 1–4 (2016).
  • [22] E. Kurgan and P. Gas, “Simulation of the electromagnetic field and temperature distribution in human tissue in RF hyperthermia”, Przeglad Elektrotechniczny 91(1), 169–172 (2015).
  • [23] B. Mochnacki and M. Ciesielski, “Sensitivity of transient temperature field in domain of forearm insulated by protective clothing with respect to perturbations of external boundary heat flux”, Bull. Pol. Ac.: Tech. 64(3), 591–598 (2016).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb3b1ac4-deff-437f-9b5e-cf7b275a0737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.