PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comprehensive review of tool treatments and innovations in micro-milling precision and performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advancements in micro milling, tool treatments, and ultra-precision machining centers have significantly enhanced the fabrication of micro-scale components across various industries. This paper provides a comprehensive review of recent developments in these areas, focusing on the impact of tool material innovations, surface treatments, and state-of-the-art machining centers on machining accuracy, surface finish, and tool longevity. The integration of advanced tool treatments and ultra-precision machining technologies has led to improved performance and expanded applications in fields such as biomedical engineering, electronics, and aerospace. The study discusses need and advantages of tool coating, and cryogenic treatment on tools for efficient machining and enhancement of tool life. Future research directions are also discussed, emphasizing the need for continued innovation to meet the growing demand for high-precision micro-manufacturing.
Twórcy
  • Department of Mechanical Engineering, AISSMS COE, Pune, India
  • Department of Mechanical Engineering, AISSMS COE, Pune, India
Bibliografia
  • 1. Yong, A.Y.L., Seah, K.H.W. & Rahman, M. Performance of cryogenically treated tungsten carbide tools in milling operations. Int J Adv Manuf Technol 2007; 32, 638–643. https://doi.org/10.1007/s00170-005-0379-0.
  • 2. Çiçek, A., Kıvak, T., Ekici, E., Kara, F., & Uçak, N. Performance of multilayer coated and cryo-treated uncoated tools in the machining of AISI H13 tool steel—Part 1: Tungsten carbide end mills. Journal of Materials Engineering and Performance, 2021; 30(6), 3436–3445. https://ui.adsabs.harvard.edu/link_gateway/2021JMEP...30.3436C/doi:10.1007/s11665-021-05656-w.
  • 3. Anand, S., & Mathew, M. Optimization of cutting parameters affecting surface roughness in micro milling of Inconel 625 superalloy with cryogenically treated tungsten carbide inserts. SN Applied Sciences, 2021; 3(1), 1–11. https://link.springer.com/article/10.1007/s42452-021-04303-2.
  • 4. Muhammad, A., Gupta, M.K., Mikołajczyk, T., Pimenov, D.Y., Giasin, K. Effect of tool coating and cutting parameters on surface roughness and burr formation during micromilling of inconel 718, Metals, MDPI, 2021. https://doi.org/10.3390/met11010167.
  • 5. Rathod, V.P., Wankhade, S.H. A review on the impact of micro-tools on micro-milling outcomes for aluminium alloy. Advances in Science and Technology Research Journal, 2025; 19(3). https://doi.org/10.12913/22998624/200007.
  • 6. Baig, A., Khan, M.A., Jaffery, S.H.I., Khan, M., Naseer, R., Shah, I., Petru, J. Experimental evaluation of machinability of Monel 400 alloy during high-speed micro milling using various tool coatings, Advances in Science and Technology Research Journal, 2024. https://doi.org/10.12913/22998624/190624.
  • 7. Rinku K. Mittal, Ramesh K. Singha, Salil S. Kulkarni, Praveen Kumarb, H.C. Barshiliab, Characterization of anti-abrasion and anti-friction coatings on micromachining response in high-speed micromilling of Ti-6Al-4V, Journal of Manufacturing Processes, Elsevier, 2018. https://doi.org/10.1016/j.jmapro.2018.06.021.
  • 8. Mittal, R.K., Kulkarni, S.S., Barshilia, H., Singh, R.K. Machining response and damage evolution of amorphous carbon (WC/a-C) coated tools in high-speed micromilling of Ti-6Al-4V, Journal of Micro and Nano-Manufacturing, ASME, 2020. http://dx.doi.org/10.1115/1.4046192.
  • 9. Zariatin, D.L. Investigation of the micro-milling process of thin-wall features of aluminum alloy 1100, International Journal of Advanced Manufacturing Technology, CrossMark Springers, 2018. https://link.springer.com/article/10.1007%2Fs00170-017-0514-8.
  • 10. Mario J. Remolina, Marco A. Velasco, Córdoba, E. Chip experimental analysis approach obtained by micro-end-milling in (Ti-6Al-4 V) titanium alloy and (7075) aluminium alloy, Journal of King Saud University – Engineering Sciences, 2021. https://doi.org/10.1016/j.jksues.2021.04.003.
  • 11. Walczak, M., Pasierbiewicz, K., Szala, M. Adhesion and mechanical properties of TiAlN and AlTiN magnetron sputtered coatings deposited on the DMSL titanium alloy substrate, ACTA PHYSICA POLONICA A, 2019; 136(2). http://dx.doi.org/10.12693/APhysPolA.136.294.
  • 12. Niemczewska-Wójcik, M., Madej M. Surface topography and tribological properties of cutting tool coatings. Advances in Science and Technology Research Journal. 2023; 17(6), 39–48. https://doi.org/10.12913/22998624/173214.
  • 13. Özkan, D., Yilmaz, M.A., Karakurt, D., Szala, M., Walczak, M., Bakdemir, S.A., Türküz, C., Sulukan, E. Effect of AISI H13 steel substrate nitriding on AlCrN, ZrN, TiSiN, and TiCrN multilayer PVD coatings wear and friction behaviors at a different temperature level. Materials 2023; 16, 1594. https://doi.org/10.3390/ma16041594.
  • 14. Shingea, A.R., Dabadeb, U.A. The effect of process parameters on material removal rate and dimensional variation of channel width in micro milling of aluminium alloy 6063, Procedia Manufacturing, Elsevier, 2018. Design Engineering. 10.1016/j.promfg.2018.02.024.
  • 15. Davoodi, B., Eskandari, B. Tool wear mechanisms and multi-response optimization of tool life and volume of material removed in turning of N-155 iron–nickel-base superalloy using RSM, Measurements, Elsevier, 2015. http://dx.doi.org/10.1016/j.measurement.2015.03.006.
  • 16. Özbek, N.A. Effects of cryogenic treatment types on the performance of coated tungsten tools in the turning of AISI H11 steel, Journal of Materials Research and Technology, Elsevier, 2020. https://doi.org/10.1016/j.jmrt.2020.03.038.
  • 17. Ucun, I., Aslantasx, K., Bedir, F. The effect of minimum quantity lubrication and cryogenic pre-cooling on cutting performance in the micro milling of Inconel 718, J Engineering Manufacture, SAGE, 2015. http://dx.doi.org/10.1177/0954405414546144.
  • 18. Mokhtar, M.S.M., Yusoff, A.R. Effect of machining parameters on micro-burrs formation of aluminium puncher using high-speed machining process, Journal of Advanced Research in Applied Mechanics, SEMARAK ILMU, 2024. https://doi.org/10.37934/aram.115.1.4760.
  • 19. Mokhtar, M.S.M, Yusoff, A.R. Effect of micro-milling parameters on burr formation and surface roughness in aluminum microchannels puncher, Jurnal Tribologi, MYTRIBOS, 2024.
  • 20. He, Q., Kang, X., Wu, X. Micro-milling of additively manufactured Al-Si-Mg aluminum alloys, Materials, MDPI, 2024. https://doi.org/10.3390/ma17112668.
  • 21. Dang, M.N., Singh, S., Navarro-Devia, J.H., King, H.J., Hocking, R.K., Wade, S.A., Stephens, G., Papageorgiou, A., & Wang, J. An investigation into the surface integrity of micro-machined high-speed steel and tungsten carbide cutting tools. Micromachines, 2023; 14(10), 1970. https://doi.org/10.3390/mi14101970.
  • 22. Biermann, D., Klocke, F., & Klink, A. Burr formation in micro milling of austenitic stainless steel. International Journal of Advanced Manufacturing Technology, 2009; 41(5–6), 497–507. https://doi.org/10.1016/j.procir.2012.07.018.
  • 23. Kowalczyk J., Madej M., Piotrowska K., Radoń-Kobus K. The impact of a movement type on tribological properties of AlTiN coating deposited on HS6-5-2C steel. Advances in Science and Technology Research Journal. 2024; 18(2), 305–316. https://doi.org/10.12913/22998624/185164.
  • 24. Li, X., Zhang, L., & Zhang, Y. Surface integrity and burr formation in micro milling of 12L14 steel under minimum quantity lubrication. Journal of Manufacturing Processes, 2019; 45, 1–10. http://dx.doi.org/10.1007/978-3-642-00568-8_15.
  • 25. Samuel, S., Sahoo, S., & Sahoo, S. Performance evaluation of TiAlN-coated WC micro-mills in micromilling of Nimonic 75 nickel alloy. Journal of Manufacturing Processes, 2020; 45, 1–10.
  • 26. Swain, N., Venkatesh,1, V., Kumar, P., Srinivas, G., Ravishankar, S., Barshilia, H.C. An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills, CIRP Journal of Manufacturing Science and Technology. https://doi.org/10.1016/j.cirpj.2016.07.005.
  • 27. Rahman, M.M., & Rahman, M.M. (2005). Performance of cryogenically treated tungsten carbide tools in milling operations. International Journal of Advanced Manufacturing Technology, 25(9–10), 1001–1005. http://dx.doi.org/10.1007/s00170-005-0379-0.
  • 28. Balázs, B.Z., Jacsó, Á., & Takács, M. Micromachining of hardened hot-work tool steel: Effects of milling strategies. The International Journal of Advanced Manufacturing Technology, 2020; 108(9–10), 2839–2854. https://doi.org/10.1007/s00170-020-05561-x.
  • 29. Hu, G., Xin, W., Zhang, M., Chen, G., Man, J., & Tian, Y. Development of a fast positioning platform with a large stroke based on a piezoelectric actuator for precision machining. Micromachines, 2024; 15(8), 1050. https://doi.org/10.3390/mi15081050.
  • 30. O’Toole, L., Kang, C.-W., & Fang, F.-Z. Precision micro-milling process: State of the art. Advances in Manufacturing, 2020; 9(4), 173–205. https://doi.org/10.1007/s40436-020-00323-0.
  • 31. Wardle, F., & Davies, M. Design of a five-axis ultra-precision micro-milling machine—UltraMill: Part 1—Holistic design approach, design considerations and specifications. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009; 223(6), 707–718. https://doi.org/10.1007/s00170-009-2128-2.
  • 32. Kang, C.-W., O’Toole, L., & Fang, F.-Z. Precision micro-milling process: State of the art. Advances in Manufacturing, 2020; 9(4), 173–205. https://doi.org/10.1007/s40436-020-00323-0.
  • 33. Gonçalves, M.C.C., Alsters, R., Curtis, D., M’Saoubid, R., Ghadbeigia, H. Evolution of surface quality in micromilling Ti-6Al-4V alloy with increasing machined length, Procedia CIRP, Elsevier, 2024. https://doi.org/10.1016/j.procir.2024.05.040.
  • 34. Özbek, N.A. Effects of cryogenic treatment types on the performance of coated tungsten tools in the turning of AISI H11 steel, Journal of Materials Research and Technology, Elsevier, 2020. https://doi.org/10.1016/j.jmrt.2020.03.038.
  • 35. Alam, S.T., Tomal, A.N.M A., Nayeem, M.K. High-speed machining of Ti–6Al–4V: RSM-GA based optimization of surface roughness and MRR, Results in Engineering, Elsevier, 2023. https://doi.org/10.1016/j.rineng.2022.100873.
  • 36. Kundiya, R., Pawade, R., More, S., Datir, G., Kundiya, K. Acoustic emission signal correlation with micro-machining characteristics of Ti-6Al-4V alloy, International Journal on Interactive Design and Manufacturing (IJIDeM), Springer, 2024. https://doi.org/10.1007/s12008-024-01956-2.
  • 37. Dehena, S., Segebadea, E., Gerstenmeyera, M., Zangera, F., Schulzea, V. Milling parameter and tool wear dependent surface quality in micro-milling of brass, Procedia CIRP, Elsevier, 2020. https://doi.org/10.1016/j.procir.2020.02.024.
  • 38. Vázquez, E., Gómez, X., Ciurana, J. An experimental analysis of process parameters for the milling of micro-channels in biomaterials, Int. J. Mechatronics and Manufacturing Systems, 2012.
  • 39. Zhang, H., Chen, L., Sun, J., Wang, W., Wang, Q. An investigation of cobalt phase structure in WC–Co cemented carbides before and after deep cryogenic treatment, Int. Journal of Refractory Metals and Hard Materials, Elsevier, 2015. https://doi.org/10.1016/j.ijrmhm.2015.04.007.
  • 40. Khare, S.K., Gulati, P., Singh, J.P., Phull, G.S. Effect of High-Speed Machining on Surface Roughness Characteristics Ra, Rq, RZ, E3S Web of Conferences, ICMPC 2023, 2023. https://doi.org/10.1051/e3sconf/202343001271.
  • 41. Varghese, A., Kulkarni, V., Joshi, S.S. Tool life stage prediction in micro-milling from force signal analysis using machine learning methods, Journal of Manufacturing Science and Engineering, ASME, 2020. https://doi.org/10.1115/1.4048636.
  • 42. Liang, Z., Gao, P., Wang, X., Li, S., Zhou, T., Xiang, J. Cutting performance of different coated micro end mills in machining of Ti-6Al-4V, Micromachines, MDPI, 2018. https://doi.org/10.3390/mi9110568.
  • 43. Kowalczyk, J., Madej, M., Piotrowska, K., Radoń-Kobus, K. The impact of a movement type on tribological properties of AlTiN coating deposited on HS6-5-2C steel. Advances in Science and Technology Research Journal, 2024; 18(2), 305–316. https://doi.org/10.12913/22998624/185164.
  • 44. Walczak, M., Pasierbiewicz, K., Szala, M. Effect of Ti6Al4V Substrate Manufacturing Technology on the Properties of PVD Nitride Coatings, 2022; 142, 6 Proceedings of the XIII International Conference on Ion Implantation and Other Applications of Ions and Electrons (ION 2022), 673–788. https://doi.org/10.12693/APhysPolA.142.723.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb35cba4-e80b-4146-bc8b-0454400f2124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.