PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of titanium alloys used in the SLM additive technology

Identyfikatory
Warianty tytułu
PL
Charakterystyka stopów tytanu stosowanych w technologii przyrostowej SLM
Języki publikacji
EN PL
Abstrakty
EN
The article presents an overview of titanium alloys presently used in the Selective Laser Melting (SLM) technology. In the article, particular attention is paid to obtained strength properties and structural transformations of materials used in the tests. The article also presents the application potential of individual alloys and discusses the SLM additive technology.
PL
Przedstawiono przegląd obecnie stosowanych stopów tytanu w technologii selektywnego przetapiania wiązką lasera (SLM, ang. Selective Laser Melting). Zwrócono uwagę w szczególności na osiągane właściwości wytrzymałościowe oraz zachodzące podczas wytwarzania elementów zmiany strukturalne wykorzystanych materiałów. Ponadto zaprezentowano możliwości aplikacyjne poszczególnych stopów oraz scharakteryzowano technologię przyrostową SLM.
Rocznik
Strony
31--38
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Wrocław University of Technology; Faculty of Mechanical Engineering; Division of Materials Science, Welding and Strength of Materials
  • Silesian University of Technology; Institute of Engineering Materials and Biomaterials, Division of Nanocrystalline and Functional Materials and Sustainable Pro-Ecological Technologies
  • Wrocław University of Technology; Faculty of Mechanical Engineering; Division of Materials Science, Welding and Strength of Materials
Bibliografia
  • [1] Vilaro T., Colin C., Bartout J.D.: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, no. 42, pp. 3190–3199, doi:10.4997/JRCPE.2017.305. https://link.springer.com/article/10.1007%2Fs11661-011-0731-y
  • [2] Inagaki I., Takechi T., Sharai Y., Ariyasu N.: Application and Features of Titanium for the Aerospace Industry. Nippon Steel & Sumitomo Metal Technical Report, 2014, pp. 22–27, doi:10.1016/j.rser.2010.03.036.
  • [3] Lütjering G., Williams J.C.: Titanium. Springer Berlin Heidelberg, 2007, doi:10.1007/978-3-540-73036-1.
  • [4] Cui C., Hu B.M., Zhao L., Liu S.: Titanium alloy production technology, market prospects and industry development. Materials and Design, 2011, no. 32, pp. 1684–1691, doi:10.1016/j.matdes.2010.09.011. https://www.sciencedirect.com/science/article/pii/S0261306910005534?via%3Dihub
  • [5] Santos E.C., Shiomi M., Osakada K., Laoui T.: Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 2006, no. 46, pp. 1459–1468, doi:10.1016/j.ijmachtools.2005.09.005. https://www.sciencedirect.com/science/article/pii/S0890695505002683?via%3Dihub
  • [6] Zhou L., Yuan T., Li R., Tang J., Wang M., Mei F.: Microstructure and mechanical properties of selective laser melted biomaterial Ti-13Nb-13Zr compared to hot-forging. Materials Science and Engineering A, 2018, no. 725, pp. 329–340, doi:10.1016/j.msea.2018.04.001. https://www.sciencedirect.com/science/article/pii/S0921509318304982?via%3Dihub
  • [7] Deng L., Wang S., Wang P., Kühn U., Pauly S.: Selective laser melting of a Ti-based bulk metallic glass. Materials Letters, 2018, no. 212, pp. 346–349, doi:10.1016/j.matlet.2017.10.130. https://www.sciencedirect.com/science/article/pii/S0167577X17316063?via%3Dihub
  • [8] Wu X., Cai C., Yang L., Liu W., Li W., Li M., Liu J., Zhou K., Shi Y.: Enhanced mechanical properties of Ti-6Al-2Zr-1Mo-1V with ultrafine crystallites and nano-scale twins fabricated by selective laser melting. Materials Science and Engineering A, 2018, no. 738, pp. 10–14, doi:10.1016/j.msea.2018.09.087. https://www.sciencedirect.com/science/ article/pii/S0921509318312942?via%3Dihub
  • [9] Li W., Liu J., Wen S., Wei Q., Yan C., Shi Y.: Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting. Materials Characterization, 2016, no. 113, pp. 125–133, doi:10.1016/j.matchar.2016.01.012. https://www.sciencedirect.com/science/article/pii/S1044580316300134?via%3Dihub
  • [10] Li Y., Ding Y., Munir K., Lin J., Brandt M., Atrens A., Xiao Y., Kanwar J.R., Wen C.: Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomaterialia, 2019, doi:10.1016/j.actbio.2019.01.051. https://www.sciencedirect.com/science/article/pii/S174270611930073X?via%3Dihub
  • [11] Sing S.L., An J., Yeong W.Y., Wiria F.E.: Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 2016, no. 34, pp. 369–385, doi:10.1002/jor.23075. https://onlinelibrary.wiley.com/doi/full/10.1002/jor.23075
  • [12] Abe F., Osakada K., Shiomi M., Uematsu K., Matsumoto M.: The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, no. 111, pp. 210–213, doi:10.1016/S0924-0136(01)00522-2. https://www.sciencedirect.com/science/article/pii/S0924013601005222?via%3Dihub
  • [13] Louvis E., Fox P., Sutcliffe C.J.: Selective laser melting of aluminium components. Journal of Materials Processing Technology, 2011, no. 211, pp. 275–284, doi:10.1016/j.jmatprotec.2010.09.019. https://www.sciencedirect.com/science/ article/pii/S0924013610003018?via%3Dihub
  • [14] Gu D., Hagedorn Y.C., Meiners W., Meng G., Batista R.J.S., Wissenbach K., Poprawe R.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Materialia, 2012, no. 60, pp. 3849–3860, doi:10.1016/j.actamat.2012.04.006. https://www.sciencedirect.com/science/article/pii/S1359645412002522?via%3Dihub
  • [15] Murr L.E., Gaytan S.M., Ramirez D.A., Martinez E., Hernandez J., Amato K.N., Shindo P.W., Medina F.R., Wicker R.B.: Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. Journal of Materials Science and Technology, 2012, no. 28, pp. 1–14, doi:10.1016/S1005-0302(12)60016-4. https://www.sciencedirect.com/science/article/pii/S1005030212600164?via%3Dihub
  • [16] Craeghs T., Thijs L., Verhaeghe F., Kruth J.-P., Humbeeck J. Van: A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 2010, no. 58, pp. 3303–3312, doi:10.1016/j.actamat.2010.02.004. https://www.sciencedirect.com/science/article/pii/S135964541000090X?via%3Dihub
  • [17] Chen Q., Guillemot G., Gandin C.-A., Bellet M.: Finite element modeling of deposition of ceramic material during SLM additive manufacturing. MATEC Web of Conferences, 2016, no. 80, p. 08001, doi:10.1051/matecconf/20168008001. https://www.matec-conferences.org/articles/matecconf/abs/2016/43/matecconf_numi2016_08001/matecconf_numi2016_08001.html
  • [18] Bambach M., Sizova I., Emdadi A.: Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. Journal of Manufacturing Processes, 2019, no. 37, pp. 150–158, doi:10.1016/j.jmapro.2018.11.011. https://www.sciencedirect.com/science/article/pii/S1526612518305978?via%3Dihub
  • [19] Liang H., Yang Y., Xie D., Li L., Mao N., Wang C., Tian Z., Jiang Q., Shen L.: Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. Journal of Materials Science & Technology, 2019, doi:10.1016/j.jmst.2019.01.012. https://www.sciencedirect.com/science/article/pii/S1005030219300234?via%3Dihub
  • [20] Kelly C.N., Evans N.T., Irvin C.W., Chapman S.C., Gall K., Safranski D.L.: The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science and Engineering: C, 2019, no. 98, pp. 726–736, doi:10.1016/J.MSEC.2019.01.024. https://www.sciencedirect.com/science/article/pii/S0928493118321350?via%3Dihub
  • [21] Sun D., Gu D., Lin K., Ma J., Chen W., Huang J., Sun X., Chu M.: Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technology, 2019, no. 342, pp. 371–379, doi:10.1016/j.powtec.2018.09.090. https://www.sciencedirect.com/science/article/pii/S0032591018308234?via%3Dihub
  • [22] Wysocki B., Maj P., Sitek R., Buhagiar J., Kurzydłowski K., Święszkowski W.: Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Applied Sciences, 2017, no. 7, p. 657, doi:10.3390/app7070657. https://www.mdpi.com/2076-3417/7/7/657
  • [23] Chastand V., Quaegebeur P., Maia W., Charkaluk E.: Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Materials Characterization, 2018, no. 143, pp. 76–81, doi:10.1016/j.matchar.2018.03.028. https://www.sciencedirect.com/science/article/pii/S1044580317331741?via%3Dihub
  • [24] Kumar P., Prakash O., Ramamurty U.: Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Materialia, 2018, no. 154, pp. 246–260, doi:10.1016/j.actamat.2018.05.044. https://www.sciencedirect.com/science/article/pii/S1359645418304117?via%3Dihub
  • [25] Sabban R., Bahl S., Chatterjee K., Suwas S.: Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Materialia, 2019, no. 162, pp. 239–254, doi:10.1016/j.actamat.2018.09.064. https://www.sciencedirect.com/science/article/pii/S1359645418307766?via%3Dihub
  • [26] Henriques V.A.R., Galvani E.T., Petroni S.L.G., Paula M.S.M., Lemos T.G.: Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy. Journal of Materials Science, 2010, no. 45, pp. 5844–5850, doi:10.1007/s10853-010-4660-8. https://link.springer.com/article/10.1007%2Fs10853-010-4660-8
  • [27] Seramak T., Zasinska K., Mesnard M., Bednarz K., Fic P., Zielinski A.: Determinants of the surface quality , density and dimensional correctness in selective laser melting of the Ti-13Zr-13Nb alloy. 2018, no. 405, doi:10.1051/mattech/2018050. https://www.mattech-journal.org/articles/mattech/abs/2018/04/mt180007/mt180007.html
  • [28] Zhou L., Yuan T., Li R., Tang J., Wang M., Mei F.: Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting. Journal of Alloys and Compounds, 2018, no. 762, pp. 289–300, doi:10.1016/j.jallcom.2018.05.179. https://www.sciencedirect.com/science/article/pii/S0925838818318929?via%3Dihub
  • [29] Zhou L., Yuan T., Li R., Tang J., Wang G., Guo K., Yuan J.: Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology, 2019, no. 342, pp. 11–23, doi:10.1016/j.powtec.2018.09.073. https://www.sciencedirect.com/science/article/pii/S0032591018307976?via%3Dihub
  • [30] Chen W., Chen C., Zi X., Cheng X., Zhang X., Lin Y.C., Zhou K.: Controlling the microstructure and mechanical properties of a metastable β titanium alloy by selective laser melting. Materials Science and Engineering A, 2018, no. 726, pp. 240–250, doi:10.1016/j.msea.2018.04.087. https://www.sciencedirect.com/science/article/pii/S0921509318305963?via%3Dihub
Uwagi
PL
Wersja polska artykułu w wydaniu papierowym s. 36-39.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb351436-8763-4057-bf33-efbdcb5803d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.