Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In response to the increasing demand for water in irrigated areas, the use of groundwater pumping is emerging as a compelling alternative, particularly in arid and semi-arid regions. However, the costs associated with fossil fuel based pumping systems, as well as their negative environmental impact through the emission of harmful gases, have prompted a shift towards renewable energy. The main objective of this study is to analyze and optimize the feasibility of a groundwater pumping system using different energy sources by HOMER Energy. A farmer in the Nabeul region (Chiba) was selected for an in-depth analysis of water demand and pumping station sizing. The evaluations showed that a 3 kW photovoltaic panel installation per hectare could sufficiently meet the irrigation water needs of this farmer. After optimizing the proposed pumping systems, including diesel generator (DG), photovoltaic (PV) and hybrid (DG + PV) panels, it was determined that the most economical and environmentally friendly solution was the hybrid system. This system produces a power output of 3.3 kW, with CO2 emissions in the order of 5.117 kg per year. HOMER software is a powerful tool for optimizing energy-efficient irrigation practices and assessing the best mix of renewable and conventional energy resources to meet specific needs.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
147--161
Opis fizyczny
Bibliogr. 33 poz., rys. tab.
Twórcy
autor
- National Research Institute of Rural Engineering, Water and Forests, University of Carthage, Ariana 2080, Tunisia
autor
- National Research Institute of Rural Engineering, Water and Forests, University of Carthage, Ariana 2080, Tunisia
autor
- Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
autor
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
autor
- National Research Institute of Rural Engineering, Water and Forests, University of Carthage, Ariana 2080, Tunisia
- Faculty of Science of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
autor
- National Research Institute of Rural Engineering, Water and Forests, University of Carthage, Ariana 2080, Tunisia
autor
- Faculty of Science of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
autor
- National Research Institute of Rural Engineering, Water and Forests, University of Carthage, Ariana 2080, Tunisia
autor
- National Research Institute of Rural Engineering, Water and Forests, University of Carthage, Ariana 2080, Tunisia
Bibliografia
- 1. Agyekum, E.B., Ampah J.D., Afrane S., Adebayo, T.S. Agbozo E. (2022). A 3E, hydrogen production, irrigation, and employment potential assessment of a hybrid energy system for tropical weather conditions – Combination of HOMER software, shannon entropy, and TOPSIS. International Journal of Hydrogen Energy 47, 31073–31097. https://doi.org/10.1016/j.ijhydene.2022.07.049
- 2. Allen R.G., Pereira L.S., Raes D., Smith M. (1998). Crop evapotranspiration: Guide-lines for computing crop water requirements. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300.
- 3. Ammar M., Fethi M.R., Ammar B.B. (2012). Prediction of Hourly Flow Rate of a Photovoltaic Water Pumping System in the Desert of Tunisia. International Journal of Green Energy 9, 202–217. https://doi.org/10.1080/15435075.2011.621476
- 4. Babatunde O., Denwigwe I., Oyebode O., Ighravwe D., Ohiaeri A., Babatunde D. (2022). Assessing the use of hybrid renewable energy system with battery storage for power generation in a University in Nigeria. Environ Sci Pollut Res 29, 4291–4310. https://doi.org/10.1007/s11356-021-15151-3
- 5. Baghdadi F., Mohammedi K., Diaf S., Behar O. (2015). Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system. Energy Conversion and Management 105, 471–479. https://doi.org/10.1016/j.enconman.2015.07.051
- 6. Bertsiou M.M., Baltas E. (2022). Energy, economic and environmental analysis of a hybrid power plant for electrification, and drinking and irrigation water supply. Environ. Process. 9, 22. https://doi.org/10.1007/s40710-022-00575-x
- 7. Besser H., Dhaouadi L. (2022). An overview of groundwater resources evolution in North Africa: sustainability assessment of the CI aquifer under natural and anthropogenic constraints. Meteorol. Hydrol. Water Manage. 10, 73–94. https://doi.org/10.26491/mhwm/150572
- 8. Brandoni, C. Bošnjaković B. (2017). HOMER analysis of the water and renewable energy nexus for water-stressed urban areas in Sub-Saharan Africa. Journal of Cleaner Production, Sustainable Development of Energy, Water and Environmental Systems 155, 105–118. https://doi.org/10.1016/j.jclepro.2016.07.114
- 9. Canales F.A., Beluco A. (2014). Modeling pumped hydro storage with the micropower optimization model (HOMER). Journal of Renewable and Sustainable Energy 6, 043131. https://doi.org/10.1063/1.4893077
- 10. Chowdhury H., Chowdhury T., Rahman M.S., Masrur H., Senjyu, T. (2022). A simulation study of techno-economics and resilience of the solar PV irrigation system against grid outages. Environ Sci Pollut Res 29, 64846–64857. https://doi.org/10.1007/s11356-022-20339-2
- 11. Cuadros F., López-Rodrı́ guez F., Marcos A., Coello, J. (2004). A procedure to size solar-powered irrigation (photoirrigation) schemes. Solar Energy 76, 465–473. https://doi.org/10.1016/j.solener.2003.08.040
- 12. Frija A., Dhehibi B., Chebil A., Villholth K.G. (2015). Performance evaluation of groundwater management instruments: The case of irrigation sector in Tunisia. Groundwater for Sustainable Development 1, 23–32. https://doi.org/10.1016/j.gsd.2015.12.001
- 13. Gama C.H.D.A., Souza V.C.B.D., Callado N.H. (2019). Analysis of methodologies for determination of the economic pipe diameter. RBRH 24, e35. https://doi.org/10.1590/2318-0331.241920180148
- 14. Gimpel H., Graf-Drasch V., Hawlitschek F., Neumeier K. (2021). Designing smart and sustainable irrigation: A case study. Journal of Cleaner Production 315, 128048. https://doi.org/10.1016/j.jclepro.2021.128048
- 15. Hammami Abidi J., Farhat B., Ben Mammou A., Oueslati N. (2017). Characterization of Recharge Mechanisms and Sources of Groundwater Salinization in Ras Jbel Coastal Aquifer (Northeast Tunisia) Using Hydrogeochemical Tools, Environmental Isotopes, GIS, and Statistics. Journal of Chemistry 2017, e8610894. https://doi.org/10.1155/2017/8610894
- 16. Hossain Md.S., Chowdhury M.M., Das B.K., Islam M.R., Kibria Md.G., Banik S. (2024). A sustainable energy approach for pumping and irrigation in the Barind Region of Bangladesh. Clean Techn Environ Policy. https://doi.org/10.1007/s10098-023-02711-z
- 17. Kumar R., Kumar A., Gupta M.K., Yadav J., Jain A. (2022). Solar tree-based water pumping for assured irrigation in sustainable Indian agriculture environment. Sustainable Production and Consumption 33, 15–27. https://doi.org/10.1016/j.spc.2022.06.013
- 18. Lin Y., Wang J., Zhang J., Li L. (2023). Microgrid optimal investment design for cotton farms in Australia. Smart Grids and Energy 9, 5. https://doi.org/10.1007/s40866-023-00184-z
- 19. Liu R., Zhao Y., Cao G., Wang Q., Ma M., Li E., Deng H. (2022). Threat of land subsidence to the groundwater supply capacity of a multi-layer aquifer system. Journal of Hydrology: Regional Studies 44, 101240. https://doi.org/10.1016/j.ejrh.2022.101240
- 20. Maatallah T., Ghodhbane N., Ben Nasrallah S. (2016). Assessment viability for hybrid energy system (PV/wind/diesel) with storage in the northernmost city in Africa, Bizerte, Tunisia. Renewable and Sustainable Energy Reviews 59, 1639–1652. https://doi.org/10.1016/j.rser.2016.01.076
- 21. Mahmoud I.M., Ashraf A., Hatem A., Abdellatif S.O., Ghali H.A. (2024). Pre-sizing online tool for photovoltaic water pumping system: development, testing, validation, and evaluation. Discov Sustain 5, 15. https://doi.org/10.1007/s43621-024-00198-2
- 22. Masud A.A. (2017). The application of homer optimization software to investigate the prospects of hybrid renewable energy system in rural communities of Sokoto in Nigeria. International Journal of Electrical and Computer Engineering (IJECE) 7, 596–603. https://doi.org/10.11591/ijece.v7i2.pp596-603
- 23. Okakwu I.K., Alayande A.S., Akinyele D.O., Olabode O.E., Akinyemi J.O. (2022). Effects of total system head and solar radiation on the technoeconomics of PV groundwater pumping irrigation system for sustainable agricultural production. Scientific African 16, e01118. https://doi.org/10.1016/j.sciaf.2022.e01118
- 24. Onu U.G., Silva G.S., Zambroni de Souza A.C., Bonatto B.D., Ferreira da Costa V.B. (2022). Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community. Renewable Energy 198, 1021–1031. https://doi.org/10.1016/j.renene.2022.08.059
- 25. Pardo M.A., Navarro-González F.J. 2024. Sizing and scheduling optimisation method for off-grid battery photovoltaic irrigation networks. Renewable Energy 221, 119822. https://doi.org/10.1016/j.renene.2023.119822
- 26. Probst E., Fader M., Mauser W. (2024). The water-energy-food-ecosystem nexus in the Danube River Basin: Exploring scenarios and implications of maize irrigation. Science of The Total Environment 914, 169405. https://doi.org/10.1016/j.scitotenv.2023.169405
- 27. Rakib M.A., Sasaki J., Matsuda H., Quraishi S.B., Mahmud Md.J., Bodrud-Doza Md., Ullah A.K.M.A., Fatema K.J., Newaz Md.A., Bhuiyan M.A.H. (2020). Groundwater salinization and associated co-contamination risk increase severe drinking water vulnerabilities in the southwestern coast of Bangladesh. Chemosphere 246, 125646. https://doi.org/10.1016/j.chemosphere.2019.125646
- 28. Samir O., Abdel-Salam M., Nayel M., Elnozahy A. (2024). Simultaneous optimization of cost, active power loss and water quantity in irrigation: a techno-economic study incorporating PV panels and demand-side management. Electr Eng. https://doi.org/10.1007/s00202-023-02175-w
- 29. Singh D.B., Mahajan A., Devli D., Bharti K., Kandari S., Mittal G. (2021). A mini review on solar energy based pumping system for irrigation. Materials Today: Proceedings, 1st International Conference on Energy, Material Sciences and Mechanical Engineering 43, 417–425. https://doi.org/10.1016/j.matpr.2020.11.716
- 30. Souissi A. 2021. Optimum utilization of grid-connected renewable energy sources using multi-year module in Tunisia. Alexandria Engineering Journal 60, 2381–2393. https://doi.org/10.1016/j.aej.2020.12.029
- 31. Wade C.M., Baker J.S., Van Houtven G., Cai Y., Lord B., Castellanos E., Leiva B., Fuentes G., Alfaro G., Kondash A., Henry C.L., Shaw B., Redmon J.H. (2022). Opportunities and spatial hotspots for irrigation expansion in Guatemala to support development goals in the food-energy-water nexus. Agricultural Water Management 267, 107608. https://doi.org/10.1016/j.agwat.2022.107608
- 32. Wang W., Gao H., Xu L., Zhang,H., Xiong J. (2023). Coordinated power-water optimization for precision irrigation among distribution network and agricultural parks. Energy Reports, Selected papers from 2022 International Conference on Frontiers of Energy and Environment Engineering 9, 270–276. https://doi.org/10.1016/j.egyr.2023.04.073
- 33. Yousef B.A.A., Amjad R., Alajmi N.A., Rezk H. (2022). Feasibility of integrated photovoltaic and mechanical storage systems for irrigation purposes in remote areas: Optimization, energy management, and multicriteria decision-making. Case Studies in Thermal Engineering 38, 102363. https://doi.org/10.1016/j.csite.2022.102363
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb32f3ed-4bd0-4881-bcf8-960e96f2350a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.