Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the analysis of generalized multicomplex Mandelbrot-Julia (henceforth abbrev. M-J) sets is performed in terms of their shape when a degree of an iterated polynomial tends to infinity. Since the multicomplex algebras result from a tensor product of complex algebras, the dynamics of multicomplex systems described by iterated polynomials is different with respect to their complex and hypercomplex analogues. When the degree of an iterated polynomial tends to infinity the M-J sets tend to the higher dimensional generalization of the Steinmetz solid, depending on the dimension of a vector space, where a given generalization of M-J sets is constructed. The paper describes a case of bicomplex M-J sets with appropriate visualizations as well as a tricomplex one, and the most general case - the muticomplex M-J sets, and their corresponding geometrical convergents.
Rocznik
Tom
Strony
67--74
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Institute of Fundamentals of Machinery Design, Silesian University of Technology Gliwice, Poland
Bibliografia
- [1] Holbrook J.A.R., Quaternionic Fatou-Julia sets, Ann. Sci. Math. Québec 1987, 11, 79-94.
- [2] Norton A.V., Julia sets in the quaternions, Comput. Graph. 1989, 13(2), 267-278.
- [3] Gomatam J., Doyle J., Steves B., McFarlane I., Generalization of the Mandelbrot set: quaternionic quadratic maps, Chaos Soliton. Fract. 1995, 5(6), 971-986.
- [4] Bedding S., Briggs K., Iteration of quaternion maps, Int. J. Bifurcat. Chaos 1995, 5(3), 877-881.
- [5] Petek P., Circles and periodic points in quaternionic Julia sets, Open Syst. Inf. Dyn. 1997, 4(4), 487-492.
- [6] Lakner M., Petek P., The one-equator property, Experiment. Math. 1997, 6(2), 109-115.
- [7] Wang X.Y., Sun Y.Y., The general quaternionic M-J sets on the mapping z E z_ + c, Comput. Math. Appl. 2007, 53(11), 1718-1732.
- [8] Griffin C.J., Joshi G.C., Octonionic Julia sets, Chaos Soliton. Fract. 1992, 2(1), 11-24.
- [9] Griffin C.J., Joshi G.C., Transition points in octonionic Julia sets, Chaos Soliton. Fract. 1993, 3(1), 67-88.
- [10] Griffin C.J., Joshi G.C., Associators in generalized octonionic maps, Chaos Soliton. Fract. 1993, 3(3), 307-319.
- [11] Rochon D., Generalized Mandelbrot set for bicomplex numbers, Fractals 2000, 8(4), 355-368.
- [12] Rochon D., On a generalized Fatou-Julia theorem, Fractals 2003, 11(3), 213-219.
- [13] Martineau, É., Rochon, D., On a bicomplex distance estimation for the Tetrabrot, Int. J. Bifurcat. Chaos 2005, 15(9), 3039-3050.
- [14] Matteau C., Rochon D., The inverse iteration method for Julia sets in the 3-dimensional space, Chaos Soliton. Fract. 2015, 75, 272-280.
- [15] Parisé P.O., Rochon D., A study on dynamics of the tricomplex polynomial _p + c, Nonlin. Dyn. 2015, 82(1), 157-171.
- [16] Garant-Pelletier V., Rochon D., On a generalized Fatou-Julia theorem in multicomplex spaces, Fractals 2009, 17(3), 241-255.
- [17] Zireh A., A generalized Mandelbrot set of polynomials of type Ed for bicomplex numbers, Georgian Math. J. 2008, 15(1), 189-194.
- [18] Wang X.Y., Song W.J., The generalized M-J sets for bicomplex numbers, Nonlin. Dyn. 2013, 72(1), 17-26.
- [19] Price G.B., An Introduction to Multicomplex Spaces and Functions, Marcel Dekker Inc., New York 1991.
- [20] Rönn S., Bicomplex algebra and function theory, arXiv: math/0101200v1, 2001, 1-71.
- [21] Katunin A., Fedio K., On a visualization of the convergence of the boundary of generalized Mandelbrot set to (n-1)-sphere, J. Appl. Math. Comput. Mech. 2015, 14(1), 63-69.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb32b540-188a-4d61-8350-bccd85a37eb3