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Abstract. In this paper, the analysis of generalized multicomplex Mandelbrot-Julia (hence-

forth abbrev. M-J) sets is performed in terms of their shape when a degree of an iterated 

polynomial tends to infinity. Since the multicomplex algebras result from a tensor product 

of complex algebras, the dynamics of multicomplex systems described by iterated polyno-

mials is different with respect to their complex and hypercomplex analogues. When the 

degree of an iterated polynomial tends to infinity the M-J sets tend to the higher dimen-

sional generalization of the Steinmetz solid, depending on the dimension of a vector space, 

where a given generalization of M-J sets is constructed. The paper describes a case of 

bicomplex M-J sets with appropriate visualizations as well as a tricomplex one, and 

the most general case - the muticomplex M-J sets, and their corresponding geometrical 

convergents. 
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1. Introduction 

The Mandelbrot set and corresponding Julia sets were intensively studied 

during the 80s of the XX century and many fascinating properties of these sets 

were observed to date. Considering that M-J sets are defined on a complex plane C 

in the form of a quadratic polynomial: 
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2

1
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+
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nothing stands in a way of generalization of these sets both in terms of degree 

of the polynomial as well as in terms of a vector space in which it is constructed. 

The first generalization of complex M-J sets to quaternionic H ones was defined 

by Holbrook [1], and then further developed and analysed by several authors [2-6]. 

Then, Wang and Sun [7] proposed a generalization of quaternionic M-J sets 

in terms of a degree of an iterated polynomial p: 
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However, these studies show that the dynamics of quaternionic maps is trivial 

with respect to their complex analogues. The same can be observed for the further 

generalization - the M-J sets in octonions O, introduced and studied by Griffin 

and Joshi in the early 90s of the XX century [8-10]. 

An alternative to the above-mentioned generalization was proposed by Rochon 

and his team. In 2000, Rochon introduced a generalization of M-J sets to a bicom-

plex vector space [11], further several studies on properties of this type of M-J sets 

[12-14] as well as their generalization to tricomplex [15] and multicomplex [16] 

analogues were proposed. The generalized version of bicomplex M-J sets with 

respect to a degree of an iterated polynomial was also studied by Zireh [17], and 

Wang and Song [18]. The performed studies of the above-mentioned teams show, 

in general, the different dynamics with respect to hypercomplex M-J sets which 

reflect, in particular, in varying character of changing a shape of these sets for 

varying values of a constant c in an iterated polynomial of type (2). 

In the following study, the convergents of the multicomplex M-J sets, i.e. the 

sets for ∞→p , are analysed. The study starts with the simplest case - the bicom- 

plex M-J sets, through the tricomplex ones, and ends with the most general case 

n-complex or multicomplex M-J sets. In each of the considered cases it was shown 

that the shapes of the convergents of M-J sets in multicomplex vector spaces tend 

to higher-dimensional generalizations of a Steinmetz solid. 

2. Preliminaries to multicomplex algebras 

Let us begin with the preliminaries of multicomplex vector spaces from the sim- 

plest case - a 4-algebra of  bicomplex numbers CC⊗ . For simplicity, the follow-

ing notation is introduced: C
2
, where the lower index denotes a number of tensor 

product operations on complex algebras (thus C
2
 denotes an algebra of bicomplex 

numbers, C
3
 denotes an algebra of tricomplex numbers, etc.). The bicomplex 

numbers can be expressed in the symbolic representation as follows: 

 { }1j,1ii:jii: 22

2

2

14231212
=−==+++= aaaaC , (3) 

where R∈ka  are the associators, 
1
i , 

2
i  and j  are the imaginary units with the 

following interrelations: 
122
ijiji −== , 

211
ijiji −== , jiiii

2112
== . Since C

2
 is 

commutative and considering the existence of idempotents for C
2
 (which follows 

from the definition of bicomplex numbers): 

 ( ) ( )
21211121221
eieii zzzzzz ++−=+ , (4) 

where { }1i:i:,
2

11121
−=+=∈ yxzz C  (or just C since C ≡ C

1
), ( ) 2j1e

1
+=  and 

( ) 2j1e
2
−=  are idempotents which means that during multiplication 1e  and 2

e  do 
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not change the initial result: 
1

2

1
ee = , 
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1221
== . C

2
 is closed 

under addition and multiplication operations (which are necessary to perform 

an iteration of a polynomial of type (2)), and these operations can be performed 

element-wise. Considering that 
121111

i zzz += , 
221212

i zzz += , 
2

C∈kz , C∈klz , 

the addition and multiplication is defined as follows: 

 ( ) ( )
22121211121

i: zzzzzz +++=+ , (5) 

 ( )( ) ( ) ( )
12212211122122111221211211121

iii: zzzzzzzzzzzzzz ++−=++=⋅ . (6) 

The next generalization of C
2
 is an 8-algebra of tricomplex numbers C

3
 with 

the following symbolic representation [15]: 

 { } { }CCC ∈+++=∈+== kzzzzz
34332212213213
jii,i: ςςςςη  

 

 { }R∈+++++++= kaaaaaaaaa
382716453423121
jjjiiii , (7) 

with the following interrelations between imaginary units: 1iiii
2

4

2
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32332
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321314
iiijii == , 

12211
iiiij == , 1jjj 2

3

2

2

2

1
=== . Similarly to C

2
, the tri-

complex numbers can be presented as a pair of bicomplex elements: 

 ( ) ( )
22212221
γiγi ςςςςη ++−= , 

221
, C∈ςς , (8) 

where ( ) 2j1γ
32
+=  and ( ) 2j1γ

32
−=  are idempotents, or in a form of a quadruple 

of complex elements: 

 214213212211 γγγγγγγγ wwww +++=η , C∈
4321

,,, wwww , (9) 

( ) ( )
321411

i zzzzw −−+= , ( ) ( )
321412

i zzzzw −++= , ( ) ( )
321413

i zzzzw +−−= , 

( ) ( )
321414

i zzzzw ++−= , the addition and multiplication of two tricomplex 

numbers 
22211
γγ uu +=η  and 

24232
γγ uu +=η  can be performed element-wise: 

 ( ) ( )
24223121

γγ: uuuu +++=+ηη , (10) 

 ( ) ( )
24223121

γγ: uuuu +⋅=⋅ηη . (11) 

The above expressions can be generalized to a hypercomplex number space C
n
, 

which is n-tensor product 2
n

-algebra with a following symbolic representation [19]: 

 { }12,11,12,11,1 ,i:
−−−−−

∈+==
nnnnnnnn

CC ξξξξξ , (12) 
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where 1i
2
−=

n
, or alternatively: 

 { }2,24,23,212,21,2 jii:
−−−−−−−

∈+++== nknnnnnnnnnn CC ξξξξξξ , (13) 

where 
nnnnn
iiiij
11 −−

== , 1j2 =
n

. Thus, every multicomplex number in C
n
 contains 

2
n

 elements with the associators defined in R, or equivalently 2
n–m

 elements defined 

in C
m
 for nm ≤≤0 . 

The multicomplex algebra is commutative and idempotent representation of 

multicomplex number has the form [16]: 

 ( ) ( ) 112,11,1112,11,11211 γiγiγγ
−−−−−−−−−−

++−=+=
nnnnnnnnnnn

vv ξξξξξ , (14) 

where ( ) 2j1γ
1 nn
+=

−
 and ( ) 2j1γ

1 nn
−=

−
 are idempotents. Extending (5)-(6) and 

(10)-(11) to the case of C
n
 the addition and multiplication operations of two multi-

complex numbers 12111, γγ
−−

+=
nnn

vvξ  and 14132, γγ
−−

+=
nnn

vvξ  can be performed 

element-wise as: 

 ( ) ( ) 1421312,1, γγ:
−−

+++=+
nnnn

vvvvξξ , (15) 

 ( ) ( ) 1421312,1, γγ:
−−

⋅+⋅=⋅
nnnn

vvvvξξ . (16) 

3. Multicomplex M-J sets 

Having defined multicomplex algebras and basic operations on multicomplex 

numbers, one can define M-J sets as follows: 

 
( )( ){ }∞→∈= sfc
s

n

p

n

 if bounded is0:M C
C

 for 2≥p , (17) 

and correspondingly: 

 ( ) ( )( ){ }∞→∈= szfcc
s

n

p

n

 if bounded isC
C

:J  for 2≥p . (18) 

The authors of [16] proved that M sets and filled J sets defined in C
n
 are 

connected and the escaping-time radius (known also as a bailout values) equals 2. 

Moreover, the connectedness of J sets defined in C
n
 are of three types: connected, 

when p

n

c
C
M∈ , totally disconnected (i.e. homeomorphic to the Cantor dust) when 

p

n

c
C
M∉  and ( )∞∈

n

c CSA , where ( )∞
n

CSA  is a strong basin of attraction at infinity 

(see details in [16]), and disconnected, but not totally in all other cases. More 

details on connectedness and other properties of M-J sets defined in Cn can be 

found in [16]. 
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4. Convergence analysis 

When changing a degree p of an iterated polynomial of type (2) significant 

changes in a shape of the resulting M-J sets can be observed for the small values 

of p. However, when ∞→p , a shape of these sets tends to a specific geometrical 

shape. An example of such behavior for ( )0,0,5.0,5.0J
2
−

p

C
 is presented in Figure 1. 

 

     

(a) ( )0,0,5.0,5.0J
2

2
−C ;                   (b) ( )0,0,5.0,5.0J

3

2
−C ;                   (c) ( )0,0,5.0,5.0J

5

2
−C ; 

         

(d) ( )0,0,5.0,5.0J
10

2
−C ;               (d) ( )0,0,5.0,5.0J

20

2
−C ;               (f) ( )0,0,5.0,5.0J

50

2
−C ; 

Fig. 1. 3D projections of bicomplex J sets for c = (–0.5,0.5,0,0) and various values of p 
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Theorem 1. The generalized bicomplex M-J sets of type (2) tend to a 4-dimen-

sional Steinmetz solid when ∞→p . 

 

Before proceeding with the proof of the Theorem 1, it is necessary to define 

the generalized n-dimensional Steinmetz solid or the Steinmetz hypersolid. 

 

Definition 1. We say that the Steinmetz hypersolid n
QS  is an n-dimensional solid 

resulting from an intersection of Q n-cylinders (Q ≥ 2) of equal radii r denoted as 

( )rLC
q

n

q
, , where Qq ,,1K= , { }Re ∈= ttL

qq
:  is a q-th coordinate axis and 

( )1,,0,1,0,,0 KK=
q
e  is a unitary basis in R

n

 unique for each q, and being their 

common: 

 ( )rLCS q
n
q

Q

q

n
Q ,

1=

= I . (19) 

Proof. Suppose c = 0 in (2) defined in bicomplex numbers which is equivalent to 

the case when ∞→p . Then (2) takes a form: 

 p
kk zzzf =

+1
:)( , 

2
C∈z , N∈p . (20) 

Recalling representation of a product of two bicomplex numbers by pairs of com-

plex numbers (6), one can present (20) in the following form [20]: 

 ( ) ( )( )bafbafzf ,,,)(
21

= , (21) 

where ( ) ( )
413211

i,i, xxxxba ++= , x1,…,4 are the coordinates in C2. Following this, 

we can rewrite (20) in the form: 

 ( ) ( )( )p
k

p

kk xxxxzzf
4132111

i,i:)( ++=
+

, (22) 

and considering that C2 results from a tensor product CC⊗ , the boundary of sets 

of prisoner points, i.e. the M and “filled” J sets are given by a common of intersec-

tion of two 3-cylinders: 
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where r = 1. In the limit case (when ∞→p ) the resulting set does not have fractal 

properties. The system (23) describes 
4

2
S . 
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Corollary 1. One can extend Theorem 1 as follows: The generalized tricomplex 

M-J sets of type (2) tend to 8-dimensional Steinmetz solid when ∞→p . 
 

Proof. Considering Definition 1 and a recursive equation (20) defined in C3, 

one can express such an equation in terms of quadruple of complex numbers 

as follows: 

 ( ) ( ) ( ) ( )( )p
k

p

k

p

k

p
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+
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By analogy to the proof of Theorem 1, the tricomplex M-J sets tend to 
8

4
S  given by: 
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when ∞→p . 
 

Corollary 2. One can also extend Theorem 1 to the most general form: The gener-

alized multicomplex M-J sets of type (2) tend to an n-dimensional Steinmetz solid 

when ∞→p . 
 

Proof. Considering Definition 1 and a recursive equation (20) defined in C
n
 one 

can express such equation in terms of n/2-tuple of complex numbers. By analogy to 

the proofs of Theorem 1 and Corollary 1, the multicomplex M-J sets tend to 
n

n
S

2
 

given by: 
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when ∞→p . 

5. Conclusions 

In the presented study, the convergents of multicomplex M-J sets were investi-

gated. Starting from the simplest case - the bicomplex algebra, it was shown that 

in contrast to hypercomplex generalizations of M-J sets [21], the multicomplex 

ones tend to higher dimensional Steinmetz solids (with ∞→p ) which, in a general 

case, results from the intersection of n/2 n-cylinders in Cn 
. 
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