PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of Some Heavy Metals Used in the Surface Soil (Sediments) from Khirbet Al-Samra in Jordan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatial analysis was used to analyze the environmental quality of soil in the Al-Zarqa region in order to identify sources and estimate heavy metal concentrations, which aided in the assessment of soil quality and heavy metal pollution. The primary goal of this study was to assess the environmental impact of heavy metal pollutants in the Al-Zarqa region. To assess pollution levels, the concentrations of Cu, Mn, Cd, and Pb were measured in surface soil (sediment) samples collected from Khirbet al-Samra. A total of sixteen samples were analyzed. The elevated levels of Cu and Cd are primarily attributed to various sources such as the weathering of nearby rock formations and the release of agricultural waste materials. An evaluation of sediment contamination was conducted using pollution indicators including Geo-accumulation index (Igeo), enrichment factor (EF), and pollution load index (PLI). Spatial distribution analysis was used to determine the distribution pattern of each metal. The results revealed that metal concentrations (Cu, Pb, and Mn) are higher, while Cd concentrations are lower than the maximum allowed limits. The results from the EF analysis indicated elevated concentrations of Cu and Cd in the sampled area. In terms of the Igeo analysis of Khirbet al-Samra sediments, it was found that the concentrations of Pb, Cu, and Mn are within safe levels and relatively unaffected by human activities, whereas the concentrations of Cd exceed the mean values, suggesting a higher level of contamination specifically for cadmium. The potential sources of heavy metals in the investigated area were identified using factor analysis, and the geographical distribution of heavy metals was shown using spatial distribution. The examination of correlation coefficients revealed diverse relationships between the different parameters, depending on the source of input for each metal.
Rocznik
Strony
160--167
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Department of Allied Medical Sciences, Zarqa University College/ Al-Balqa Applied University, Al-Salt, 19117, Jordan
  • Department of Allied Medical Sciences, Zarqa University College/ Al-Balqa Applied University, Al-Salt, 19117, Jordan
  • Department of Allied Medical Sciences, Zarqa University College/ Al-Balqa Applied University, Al-Salt, 19117, Jordan
  • Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Basic and Applied Sciences, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Allied Medical Sciences, Zarqa University College/ Al-Balqa Applied University, Al-Salt, 19117, Jordan
Bibliografia
  • 1. Godwin, A. 2016. Assessment of heavy metals associated with bottom sediment of Asejire Reservoir, Southwest Nigeria. International Letters of Natural Sciences, 55, 9–16. https://doi.org/10.18052/www.scipress.com/ilns.55.9
  • 2. Williams, J.A., Antoine, J. 2020. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Marine Pollution Bulletin, 157, 111288. https://doi.org/10.1016/j.marpolbul.2020.111288
  • 3. El Houssainy, A., Abi-Ghanem, C., Dang, D.H., Mahfouz, C., Omanović, D., Khalaf, G., Mounier, S., Garnier, C. 2020. Distribution and diagenesis of trace metals in marine sediments of a coastal Mediterranean area: St Georges Bay (Lebanon). Marine Pollution Bulletin, 155, 111066. https://doi.org/10.1016/j.marpolbul.2020.111066
  • 4. Senze, M., Kowalska-Góralska, M., Czyż, K., Wondołowska-Grabowska, A. 2023. Release of selected metals (Al, CD, Cu, Mn, Ni, fe, Zn) from river bottom sediments: An experimental study. Limnological Review, 23(2), 50–69. https://doi.org/10.3390/limnolrev23020004
  • 5. Rosati, G., Solidoro, C., Canu, D. 2020. Mercury Dynamics in a changing coastal area over industrial and postindustrial phases: Lessons from the Venice Lagoon. Science of The Total Environment, 743, 140586. https://doi.org/10.1016/j.scitotenv.2020.140586
  • 6. Boutahar, L. 2020. Heavy metal bioaccumulation, and risk assessment in the Nador Lagoon, Morocco. Goldschmidt Abstracts. https://doi.org/10.46427/gold2020.236
  • 7. Singh, D., Sharma, N.L. 2018. Chromium pollution assessment of water in the Hindon River, India: Impact of industrial effluents. Environment Conservation Journal, 19(1, 2), 107–115. https://doi.org/10.36953/ecj.2018.191214
  • 8. Kacem, H.A., Bouroubi, Y., Khomalli, Y., Yaagoubi, S.E., Maanan, M., Rhinane, H., Maanan, M. 2021. Economic Benefit of Coastal ‘Blue Carbon’ Stocks in Moroccan Lagoon Ecosystem: A Case Study from Moulay Bousselham Lagoon. https://doi.org/10.21203/rs.3.rs-967047/v1
  • 9. Castro, L.N., Rendina, A.E., Orgeira, M.J. 2018. Assessment of toxic metal contamination using a regional lithogenic geochemical background, Pampean Area River Basin, Argentina. Science of The Total Environment, 627, 125–133. https://doi.org/10.1016/j.scitotenv.2018.01.219
  • 10. Ndibewu, P.P., Mokgalaka, C.C.N.S. 2012. Speciation methods for the determination of organotins (OTS) and heavy metals (MHS) in the freshwater and Marine Environments. Environmental Health - Emerging Issues and Practice. https://doi.org/10.5772/31531
  • 11. Kumar, A., Kumar, V., Thakur, M., Bakshi, P., Koul, A., Javaid, A., Radziemska, M., Pandey, V.C. 2023. Comprehensive review of nickel biogeochemistry, bioavailability, and health risks in the environment. Land Degradation & Development. https://doi.org/10.1002/ldr.4775
  • 12. Bajjali, W., Al-Hadidi, K., Ismail, M. 2015. Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet al-Samra Wastewater Treatment Plant/Jordan. Applied Water Science, 7(1), 53–69. https://doi.org/10.1007/s13201-014-0263-x
  • 13. Frech, L. 2020. Groundwater exploration using remote sensing and GIS. Hydrology and Water Resources, 95–102. https://doi.org/10.1201/9781003078845-9
  • 14. Anbuselvan, N., Senthil N.D., Sridharan, M. 2018. Heavy Metal Assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Marine Pollution Bulletin, 131, 712–726. https://doi.org/10.1016/j.marpolbul.2018.04.074
  • 15. Aldwila, N.M. 2018. Assessment of heavy metal pollution in the surface sediments of Hadhramout coast, Yemen. Advances in Clinical Toxicology, 3(1). https://doi.org/10.23880/act-16000123
  • 16. Prange, A., Knöchel, A., Michaelis, W. 1985. Multi-element determination of dissolved heavy metal traces in sea water by total-reflection Xray fluorescence spectrometry. Analytica Chimica Acta, 172, 79–100. https://doi.org/10.1016/s0003-2670(00)82596-9
  • 17. Meche, A., Martins, M.C., Lofrano, B.E.S.N., Hardaway, C.J., Merchant, M., Verdade, L. 2010. Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in f ish from the Piracicaba River in southern Brazil. Microchemical Journal, 94(2), 171–174. https://doi.org/10.1016/j.microc.2009.10.018
  • 18. Zhu, J. 2023. Determination of four heavy metals in masks by microwave digestion-ICP-MS. International Conference on Optoelectronic Materials and Devices (ICOMD 2022). https://doi.org/10.1117/12.2674715
  • 19. Jabr, G., Saidan, M., Al-Hmoud, N. 2019. Phosphorus recovery by Struvite Formation from Al Samra Municipal Wastewater Treatment Plant in Jordan. Desalination And Water Treatment, 146, 315–325. https://doi.org/10.5004/dwt.2019.23608
  • 20. Zbíral, J. 2016. Determination of plant-available micronutrients by the Mehlich 3 soil extractant -A proposal of critical values. Plant, Soil and Environment, 62(11), 527–531. https://doi.org/10.17221/564/2016-pse
  • 21. de Bronac de Vazelhes, V., Beaudoin, G., McMartin, I., Côté-Mantha, O., Boulianne-Verschelden, N. 2021. Assessment of the AMARUQ gold deposit signature in glacial sediments using multivariate geochemical data analysis and Indicator Minerals. Journal of Geochemical Exploration, 228, 106800. https://doi.org/10.1016/j.gexplo.2021.106800
  • 22. Bal, M., Mitchell, W.J. 2022. Introduction: Making as thinking, and vice versa. Image-Thinking, 1–40. https://doi.org/10.3366/edinburgh/9781474494229.003.0001
  • 23. Bensharada, M., Telford, R., Stern, B., Gaffney, V. 2021. Loss on ignition vs. Thermogravimetric Analysis: A comparative study to determine organic matter and carbonate content in sediments. Journal of Paleolimnology, 67(2), 191–197. https://doi.org/10.1007/s10933-021-00209-6
  • 24. Adeyemi, M.O., Olusola, J.A., Akpobasah, O., Adidi, N.E., Shelle, R.O. 2019. Assessment of heavy metals pollution in sediments from Ologe Lagoon, Agbara, Lagos, Nigeria. Journal of Geoscience and Environment Protection, 7(7), 61–73. https://doi.org/10.4236/gep.2019.77006
  • 25. Rajkumar, H., Naik, P.K., Rishi, M.S. 2020. A new indexing approach for evaluating heavy metal contamination in groundwater. Chemosphere, 245, 125598. https://doi.org/10.1016/j.chemosphere.2019.125598
  • 26. Chakravarty, M., Patgiri, A.D. 2009. Metal pollution assessment in sediments of the Dikrong River, N.E. India. Journal of Human Ecology, 27(1), 63–67. https://doi.org/10.1080/09709274.2009.11906193
  • 27. Omran, E.-S.E. 2016. Environmental modelling of heavy metals using pollution indices and multivariate techniques in the soils of Bahr el Baqar, Egypt. Modeling Earth Systems and Environment, 2(3). https://doi.org/10.1007/s40808-016-0178-7
  • 28. Adepoju, M.O., Adekoya, J.A. 2013. Heavy Metal Distribution and assessment in stream sediments of River Orle, southwestern Nigeria. Arabian Journal of Geosciences, 7(2), 743–756. https://doi.org/10.1007/s12517-013-0845-1
  • 29. Duncan, A.E., de Vries, N., Nyarko, K.B. 2018. Assessment of heavy metal pollution in the sediments of the River Pra and its tributaries. Water, Air, Soil Pollution, 229(8). https://doi.org/10.1007/s11270-018-3899-6
  • 30. Eucharista, E.I. 2017. Heavy metal pollution and the environment in Tiruchendur taluk and Srivaikundam taluk. International Journal of Research – Granthaalayah, 5(2), 252–265. https://doi.org/10.29121/granthaalayah.v5.i2.2017.1737
  • 31. Phanindra, K.B. 2016. Groundwater resource management using GIS Tools. Groundwater Assessment, Modeling, and Management, 439–453. https://doi.org/10.1201/9781315369044-29
  • 32. Gregory, L. 2018. Nevada National Security Site Waste Disposal Operations FY 2018 – Quarter One Disposal Volume Report. https://doi.org/10.2172/1510530
  • 33. Aljarrah, M., Medraj, M. 2008. Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and MgCa–SR systems using the modified quasichemical model. Calphad, 32(2), 240–251. https://doi.org/10.1016/j.calphad.2007.09.001
  • 34. AL-Quraan, N.A., Abu-Rub, L.I., Sallal, A.-K. 2020. Evaluation of bacterial contamination and mutagenic potential of treated wastewater from alSamra Wastewater Treatment Plant in Jordan. Journal of Water and Health, 18(6), 1124–1138. https://doi.org/10.2166/wh.2020.193
  • 35. Alissa, M., Al-Harahshah, S., Ibrahim, M. 2023. Monitoring of surface water quality in king Talal dam using GIS: A case study. Iraqi Geological Journal, 56(2A), 36–47. https://doi.org/10.46717/ igj.56.2a.3ms-2023-7-12
  • 36. Bajjali, W., Al-Hadidi, K., Ismail, M. 2015. Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet al-Samra Wastewater Treatment Plant/Jordan. Applied Water Science, 7(1), 53–69. https://doi.org/10.1007/s13201-014-0263-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb3102a0-4224-4df5-8673-6c0bcaf28bac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.