PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An alternative and easy approach to fixed point results via simulation functions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We discuss, extend, improve and enrich results on simulation functions established by several authors. Furthermore, by using Lemma 2.1 of Radenović et al. [Bull. Iran. Math. Soc., 2012, 38, 625], we get much shorter and nicer proofs than the corresponding ones in the existing literature.
Wydawca
Rocznik
Strony
223--230
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
  • Nonlinear Analysis Research Group,Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
autor
  • Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale Delle Scienze ed. 8, 90128, Palermo, Italy
  • Faculty of Sciences and Mathematics, University of Priština, Lole Ribara 29, Kosovska Mitrovica, 38220, Serbia
Bibliografia
  • [1] Khojasteh F., Shukla S., Radenović S., A new approach to the study of fixed point theorems via simulation functions, Filomat, 2015, 29, 1189–1194
  • [2] Nastasi A., Vetro P., Fixed point results on metric and partial metrric spaces via simulations functions, J. Nonlinear Sci. Appl., 2015, 8, 1059–1069
  • [3] Roldán-López-de-Hierro A. F., Karapinar E., Roldán-López-de-Hierro C., Martínez-Moreno J., Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 2015, 275, 345–355
  • [4] Demma M., Saadati R., Vetro P., Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iranian J. Math. Sci. Infor., 2016, 11, 123–136
  • [5] Nastasi A., Vetro P., Existence and uniqueness for a first-order periodic differential problem via fixed point results, Results Math., 2017, 71, 889–909
  • [6] Tchier F., Vetro C., Vetro F., Best approximation and variational inequality problems involving a simulation function, Fixed Point Theory Appl., 2016, 2016:26
  • [7] Karapinar E., Fixed points results via simulation functions, Filomat, 2016, 30, 2343–2350
  • [8] Popescu O., Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014, 2014:190
  • [9] Radenović S., Kadelburg Z., Jandrlić D., Jandrlić A., Some results on weakly contractive maps, Bull. Iran. Math. Soc., 2012, 38, 625–645
  • [10] Argoubi H., Samet S., Vetro C., Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 2015, 8, 1082–1094
  • [11] Geraghty M., On contractive mappings, Proc. Am. Math. Soc., 1973, 40, 604–608
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb2c7a15-a3f9-4c0f-93b5-b138a7f9976a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.