PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A certain class of fractional difference equations with damping: Oscillatory properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we have investigated the oscillatory properties of the following fractional difference equation: [formula] where […] denotes the Liouville fractional difference operator of order α ∈ (0,1), p , and q are nonnegative sequences, and г and G are real valued continuous functions, all of which satisfy certain assumptions. Using the generalized Riccati transformation technique, mathematical inequalities, and comparison results, we have found a number of new oscillation results. A few examples have been built up in this context to illustrate the main findings. The conclusion of this study is regarded as an expansion of continuous time to discrete time in fractional contexts.
Wydawca
Rocznik
Strony
art. no. 20220236
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Department of Mathematics, Periyar University, Salem-636 011, Tamilnadu, India
  • Department of Mathematics and Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia
  • Department of Industrial Engineering, OSTİM Technical University, Ankara 06374, Turkey
  • Department of Mathematics, Periyar University, Salem-636 011, Tamilnadu, India
  • Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, 54580 Sakarya, Turkey
Bibliografia
  • [1] F. M. Atici and S. Sengul, Modeling with fractional difference equations, J. Math. Anal. Appl. 369 (2010), no. 1, 1–9, DOI: https://doi.org/10.1016/j.jmaa.2010.02.009.
  • [2] M. R. Sagayaraj and A. G. M. Selvam, Discrete fractional calculus: Definitions and applications, Int. J. Pure Appl. Math. 2 (2014), no. 1, 93–102.
  • [3] P. Ostalczyk, Discrete Fractional Calculus: Applications in Control and Image Processing, Series in Computer vision, vol. 4, World Scientific, 2016, 396 pages, DOI: https://doi.org/10.1142/9833.
  • [4] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al. Mdallal, and H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys. 22 (2021), no. 103888, 1–8, DOI: https://doi.org/10.1016/j.rinp.2021.103888.
  • [5] V. E. Tarasov, Fractional-order difference equations for physical lattices and some applications, Results Phys. 56 (2015), no. 10, 1–19.
  • [6] H. L. Gray and N. F. Zhang, On a new definition of the fractional difference, Math. Comp. 50 (1988), no. 182, 513–529, DOI: https://doi.org/10.2307/2008620.
  • [7] K. S. Miller and B. Ross, Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications (Koriyama, 1988), Ellis Horwood Series in Mathematics and Its Applications, Horwood, Chichester, 1989, pp. 139–152.
  • [8] F. M. Atıcı and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equations. 2 (2007), no. 2, 165–176.
  • [9] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1993.
  • [10] F. M. Atici and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. (2009), no. 3, 1–12, DOI: http://dx.doi.org/10.14232/ejqtde.2009.4.3.
  • [11] D.-X. Chen, Oscillation criteria of fractional differential equations, Adv. Differential Equations 2012 (2012), no. 33, 1–10, DOI: https://doi.org/10.1186/1687-1847-2012-33.
  • [12] D.-X. Chen, Oscillatory behavior of a class of fractional differential equations with damping, UPB Sci. Bull. A Appl. Math. Phys 75 (2013), no. 1, 107–118.
  • [13] H. Khan, A. Khan, T. Abdeljawad, and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Adv. Differential Equations 2019 (2019), no. 18, 1–16, DOI: https://doi.org/10.1186/s13662-019-1965-z.
  • [14] H. Liu and R. Xu, Oscillation for a class of right fractional differential equations on the right half line with damping, Discrete Dyn. Nat. Soc. 2019 (2019), Article ID 4902718, 9 pages, DOI: http://dx.doi.org/10.1155/2019/4902718.
  • [15] H. Khan, C. Tunc, and A. Khan, Green function’s properties and existence theorems for non-linear singular-delay-fractional differential equations, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 9, 2475–2487, DOI: https://doi.org/10.3934/dcdss.2020139.
  • [16] S. Abbas, M. Benchohra, S. Sivasundaram, and C. Tunc, Existence and oscillatory results for Caputo-Fabrizio fractional differential equations and inclusions, Nonlinear Stud. 28 (2021), no. 1, 283–298.
  • [17] Asma, J. F. Gomez-Aguilar, G. U. Rahman, and M. Javad, Stability analysis for fractional order implicit Ψ -Hilfer differential equations, Math. Methods Appl. Sci. 45 (2021), no. 5, 2701–2712, DOI: https://doi.org/10.1002/mma.7948.
  • [18] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, and J. F. Gomez-Aguilar, Mild solutions of coupled hybrid fractional order system with Caputo-Hadamard derivatives, Fractals 29 (2021), no. 6, DOI: https://doi.org/10.1142/S0218348X21501589.
  • [19] O. M. Fuentes, F. M. Vazquez, G. F. Anaya, and J. F. Gomez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: Lyapunov stability and inequalities, Mathematics 9 (2021), no. 17, DOI: https://doi.org/10.3390/math9172084.
  • [20] H. Khan, T. Abdeljawad, J. F. Gomez-Aguilar, H. Tajadodi, and A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel, Fractals. 29 (2021), no. 6, DOI: https://doi.org/10.1142/s0218348X21501541.
  • [21] R. A. Khan, S. Gul, F. Jarad, and H. Khan, Existence results for a general class of sequential hybrid fractional differential equations, Adv. Differential Equations 2021 (2021), no. 284, 1–14, DOI: https://doi.org/10.1186/s13662-021-03444-3.
  • [22] A. Shah, R. Khan, and H. Khan, A fractional-order hybrid system of differential equations: Existence theory and numerical solutions, Math. Methods Appl. Sci. 45 (2021), no. 7, 4024–4034, DOI: https://doi.org/10.1002/mma.8029.
  • [23] C. S. Goodrich and J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis 41 (2021), no. 4, 221–229, DOI: https://doi.org/10.1515/anly-2021-0011.
  • [24] R. Dhayal, J. F. Gomez-Aguilar, and J. Torres-Jiemenez, Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses, Int. J. Syst. Sci, 53 (2022), no. 16, 3481–3495, DOI: https://doi.org/10.1080/00207721.2022.2090638.
  • [25] A. G. Calderon, L. X. Vivas-cruz, M. A. Taneco-Hernandez, and J. F. Gomez-Aguilar, Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simulation 207 (2023), 375–390, DOI: https://doi.org/10.1016/j.matcom.2022.11.022.
  • [26] O. Tunc and C. Tunc, Solution estimates to Caputo proportional fractional derivative delay integro-differential equations, Rev. R Acas. Cienc. Exactas Fis. Nat. Ser. A Mat. 117 (2023), no. 1, Article ID 12, DOI: https://doi.org/10.1007/s13398-022-01345-y.
  • [27] A. Secer and H. Adiguzel, Oscillation of solutions for a class of nonlinear fractional difference equations, J. Nonlinear Sci. Appl. 9 (2016), no. 11, 5862–5869, DOI: http://dx.doi.org/10.22436/jnsa.009.11.14.
  • [28] G. E. Chatzarakis, P. Gokulraj, and T. Kalaimani, Oscillation tests for fractional difference equations, Tatra Mt Math. Publ. 71 (2018), no. 1, 53–64, DOI: http://dx.doi.org/10.2478/tmmp-2018-0005.
  • [29] J. Alzabut, V. Muthulakshmi, A. Ozbekler, and H. Adıgüzel, On the oscillation of non-linear fractional difference equations with damping, Mathematics 7 (2019), no. 8, 687, 1–14, DOI: https://doi.org/10.3390/math7080687.
  • [30] J. Alzabut and T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl. 5 (2014), no. 1, 177–187, DOI: http://fcag-egypt.com/Journals/JFCA/.
  • [31] W. N. Liand and W. Sheng, Sufficient conditions for oscillation of a nonlinear fractional nabla difference system, Springer Plus, 5 (2016), no. 1178, 1–10, DOI: https://doi.org/10.1186/s40064-016-2820-2.
  • [32] B. Abdalla, K. Abodayeh, T. Abdeljawad, and J. Alzabut, New oscillation criteria for forced nonlinear fractional difference equations, Vietnam J. Math. 45 (2017), no. 4, 609–618, DOI: https://doi.org/10.1007/s10013-016-0230-y.
  • [33] W. N. Li, W. Sheng, and P. Zhang, Oscillatory properties of certain nonlinear fractional nabla difference equations, J. Appl. Anal. Comput. 8 (2018), no. 6, 1910–1918, DOI: https://doi.org/10.11948/2018.1910.
  • [34] J. Alzabut, T. Abdeljawad, and H. Alrabaiah, Oscillation criteria for forced and damped nabla fractional difference equations, J. Comput. Anal. Appl. 24 (2018), no. 8, 1387–1394.
  • [35] B. Abdalla, J. Alzabut, and T. Abdeljawad, On the oscillation of higher order fractional difference equations with mixed nonlinearities, Hacet. J. Math. Stat. 47 (2018), no. 2, 207–217, DOI: http://dx.doi.org/10.15672/HJMS.2017.458.
  • [36] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), no. 3, 1602–1611, DOI: https://doi.org/10.1016/j.camwa.2011.03.036.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb2b79d8-eab7-40b6-b8af-fcc07ae609bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.