PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of friction surfacing parameters on the microstructural, mechanical properties, and wear characteristic of Al‑Cu‑Mg alloy coating reinforced by nickel aluminide

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research has studied the microstructure, mechanical properties, and tribological properties of AA2024-Al3NiCu composite coating fabricated by friction surfacing. The Al3NiCu intermetallic was created in the aluminum matrix by adding nickel during the stir casting process and then performing the homogenization treatment. The results showed that with increasing the axial feeding rate from 87.5 to 125 mm/min and the rotational speed from 600 to 800 rpm, the coating efficiency grew up to 79%. Moreover, no significant microstructural differences (grain size, precipitate size, and morphology) were observed in different parts of the coating. Applying the coating at a rotational speed of 800 rpm, a traverse speed of 125 mm/min, and an axial feeding rate of 125 mm/min raised the hardness and shear strength of the AA2024 aluminum alloy substrate by 17% and 21%, respectively, while lowering its wear rate by 37%.
Rocznik
Strony
art. no. e75, 1--18
Opis fizyczny
Bibliogr. 50 poz., il., tab., wykr.
Twórcy
  • Department of Materials Engineering, Babol Noshirvani University of Technology, Iran
  • Department of Materials Engineering, Babol Noshirvani University of Technology, Iran
  • Department of Materials Engineering, Babol Noshirvani University of Technology, Iran
Bibliografia
  • 1. Woźniak A, Staszuk M, Reimann Ł, Bialas O, Brytan Z, Voinarovych S, et al. The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application. Arch Civ Mech Eng. 2021;21(4):1-21.
  • 2. Mostafavi M, Taghiabadi R, Jafarzadegan M. Optimizing the mechanical properties of Al-4.5 Cu-xSi alloys through multi-pass friction stir processing and post-process aging. Arch Civ Mech Eng. 2022;22(1):1-15.
  • 3. Miranda RM, Gandra JP, Vilaca P, Quintino L, Santos TG. Surface modification by solid state processing. Sawston: Woodhead Publishing; 2013.
  • 4. Gandra J, Krohn H, Miranda R, Vilaca P, Quintino L, Dos Santos J. Friction surfacing - a review. J Mater Process Technol. 2014;214(5):1062-93.
  • 5. Pirhayati P, Aval HJ. An investigation on thermo-mechanical and microstructural issues in friction surfacing of Al-Cu aluminum alloys. Mater Res Express. 2019;6(5):056550.
  • 6. Akram J, Kalvala PR, Misra M. Effect of process parameters on friction surfaced coating dimensions. Adv. Mater. Res. 2014;922:280-285.
  • 7. Kallien Z, Rath L, Roos A, Klusemann B. Experimentally established correlation of friction surfacing process temperature and deposit geometry. Surf Coat. 2020;397:126040.
  • 8. Gandra J, Vigarinho P, Pereira D, Miranda R, Velhinho A, Vilaca P. Wear characterization of functionally graded Al-SiC composite coatings produced by friction surfacing. Mater Des (1980–2015). 2013;52:373-383.
  • 9. Nakama D, Katoh K, Tokisue H. Fabrication of 6061 aluminum alloy/A12O3 particle composites by friction surfacing. Keikinzoku J Jpn Inst Light Met. 2008;58(7):299-304.
  • 10. Reddy GM, Rao KS, Mohandas T. Friction surfacing: novel technique for metal matrix composite coating on aluminium-silicon alloy. Surf Eng. 2009;25(1):25-30.
  • 11. Reddy GM, Prasad KS, Rao KS, Mohandas T. Friction surfacing of titanium alloy with aluminium metal matrix composite. Surf Eng. 2011;27(2):92-98.
  • 12. Oliveira PHF, Galvis JC, Martins JP, Carvalho ALM. Application of friction surfacing to the production of aluminum coatings reinforced with Al2O3 particles. Mater Res. 2017;20:603-620.
  • 13. Sharma A, Sagar S, Mahto RP, Sahoo B, Pal SK, Paul J. Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing. Surf Coat. 2018;337:12-23.
  • 14. Sharma A, Tripathi A, Narsimhachary D, Mahto RP, Paul J. Surface alteration of aluminium alloy by an exfoliated graphitic tribolayer during friction surfacing using a consumable graphite rich tool. Surf Topogr. 2019;7(4):045015.
  • 15. Mohanasundaram S, Vijay S, Karthikeyan M. A Review on Developing Surface Composites Using Friction Surfacing. Adv. Mater. Res. 2016;852:402-410.
  • 16. Esther I, Dinaharan I, Murugan N. Microstructure and wear characterization of AA2124/4wt% B4C nano-composite coating on Ti-6Al-4V alloy using friction surfacing. Trans Nonferr Metal Soc. 2019;29(6):1263-74.
  • 17. Janakiraman S, Bhat KU. Formation of composite surface during friction surfacing of steel with aluminium. Adv. Tribol. 2012;2012:11-15.
  • 18. Zhu J, Jiang W, Li G, Guan F, Yu Y, Fan Z. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Mater Process Technol. 2020;283:116699.
  • 19. Jiang W, Zhu J, Li G, Guan F, Yu Y, Fan Z. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. J Mater Sci Technol. 2021;88:119-131.
  • 20. Alaneme KK, Okotete EA, Fajemisin AV, Bodunrin MO. Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review. Arab J Basic Appl Sci. 2019;26(1):311-330.
  • 21. Kumar VM, Devi CN. Evaluation of mechanical characteristics for Aluminum-copper Metal matrix composite. Res J Eng Sci. 2014;2278:9472.
  • 22. Carrara A, Kakitani R, Garcia A, Cheung N. Effect of cooling rate on microstructure and microhardness of hypereutectic Al-Ni alloy. Arch Civ Mech Eng. 2021;21(1):1-9.
  • 23. Arul S. Effect of nickel reinforcement on micro hardness and wear resistance of aluminium alloy Al7075. Mater Today: Proc. 2020;24:1042-51.
  • 24. Abuthakir J, Subramanian R, Kavitha M, Venkatesh G, Manikandan P. Corrosion studies of Alx-Ni insitu intermetallics reinforced Al metal matrix composites. Mater Today: Proc. 2020;28:1158-1163.
  • 25. Vishwanatha A, Panda B, Shivanna D. Effect of a T6 aging treatment on the corrosion behaviour of in-situ AlxNiy reinforced AA6061 composite. Mater. Today: Proc. 2021;44(6):4112-4117.
  • 26. Liu F, Zhu X, Ji S. Effects of Ni on the microstructure, hot tear and mechanical properties of Al–Zn–Mg–Cu alloys under as-cast condition. J Alloys Compd. 2020;821:153458.
  • 27. Ramesh R, Suresh Kumar S, Gowrishankar S. Production and characterization of aluminium metal matrix composite reinforced with Al3Ni by stir and squeeze casting. Appl. Mech. Mater. 2015;766:315-319.
  • 28. Wang S, Starink M. Two types of S phase precipitates in Al-Cu-Mg alloys. Acta Mater. 2007;55(3):933-941.
  • 29. Dey GK. Physical metallurgy of nickel aluminides. Sadhana. 2003;28(1):247-262.
  • 30. Farajollahi R, Jamshidi AH, Jamaati R. Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process. J Alloys Compd. 2021;887:161433.
  • 31. Alizadeh R, Mahmudi R. Evaluating high-temperature mechanical behavior of cast Mg–4Zn–xSb magnesium alloys by shear punch testing. Mater Sci Eng A. 2010;527(16-17):3975-83.
  • 32. Bararpour SM, Aval HJ, Jamaati R. Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083-15wt% Zn composites. Surf Coat. 2020;384:125307.
  • 33. Rahmati Z, Jamshidi AH, Nourouzi S, Jamaati R. Effects of preheat treatment of the consumable rod on the microstructural and mechanical properties of the friction surfaced Al-Cu-Mg alloy over pure aluminum. Surf Coat. 2021;410:126954.
  • 34. Hanke S, dos Santos JF. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing. J Mater Process Technol. 2017;247:257-267.
  • 35. Rahmati Z, Aval HJ, Nourouzi S, Jamaati R. Effect of friction surfacing parameters on microstructure and mechanical properties of solid-solutionized AA2024 aluminium alloy cladded on AA1050. Mater. Chem. Phys. 2021;269:124756.
  • 36. Silverio S, Krohn H, Fitseva V, Alcantara NG, Santos JF. Deposition of AA5083-H112 over AA2024-T3 by friction surfacing. Soldag Insp. 2018;23:225-234.
  • 37. Vilaca P, Gandra J, Vidal C. Linear friction based processing technologies for aluminum alloys: surfacing, stir welding and stir channeling. In: Ahmad Z, editor. Aluminium alloys - new trends in fabrication and applications. InTech Rijeka; 2012;159-197.
  • 38. Yu M, Zhao H, Zhang Z, Zhou L, Song X, Ma N. Texture evolution and corrosion behavior of the AA6061 coating deposited by friction surfacing. J Mater Process Technol. 2021;291:117005.
  • 39. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2rd ed. Elsevier; 2012.
  • 40. Rahmati Z, Aval HJ, Nourouzi S, Jamaati R. Modeling and experimental study of friction surfacing of AA2024 alloy over AA1050 plates. Mater Res Express. 2019;6(8):0865g2.
  • 41. Galvis JC, Oliveira PHF, Hupalo MF, Martins JP, Carvalho ALM. Influence of friction surfacing process parameters to deposit AA6351-T6 over AA5052-H32 using conventional milling machine. J Mater Process Technol. 2017;245:91-105.
  • 42. Imam M, Sun Y, Fujii H, Ninshu M, Tsutsumi S, Ahmed S, et al. Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy. Int J Adv Manuf Syst. 2018;99(1):663-681.
  • 43. Bararpour SM, Jamshidi Aval H, Jamaati R. Modeling and experimental investigation on friction surfacing of aluminum alloys. J Alloys Compd. 2019;805:57-68.
  • 44. Lee I, Hsu C, Chen C, Ho N, Kao P. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Compos Sci Technol. 2011;71(5):693-698.
  • 45. Rahmati Z, Aval HJ, Nourouzi S, Jamaati R. Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy. Surf Coat. 2020;397:125980.
  • 46. Kim JT, Soprunyuk V, Chawake N, Zheng YH, Spieckermann F, Hong SH, et al. Outstanding strengthening behavior and dynamic mechanical properties of in-situ Al-Al3Ni composites by Cu addition. Compos B Eng. 2020;189:107891.
  • 47. Li G, Jiang W, Guan F, Zhu J, Zhang Z, Fan Z. Microstructure, mechanical properties and corrosion resistance of A356 aluminum/AZ91D magnesium bimetal prepared by a compound casting combined with a novel Ni-Cu composite interlayer. J Mater Process Technol. 2021;288:116874.
  • 48. Dumitraschkewitz P, Gerstl SS, Stephenson LT, Uggowitzer PJ, Pogatscher S. Clustering in age-hardenable aluminum alloys. Adv Eng Mater. 2018;20(10):1800255.
  • 49. Archard J. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981-988.
  • 50. Jones DRH, May GJ. The thermal stability of the Al-Al3Ni eutectic in a temperature gradient. Acta Metall. 1975;23(1):29-34.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb288d75-7563-40b3-8057-dbbd31323683
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.