PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Beam-column in-plane resistance based on the concept of equivalent geometric imperfections

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nośność elementów stalowych ściskanych i zginanych bez zwichrzenia na podstawie koncepcji równoważnych imperfekcji geometrycznych
Języki publikacji
EN
Abstrakty
EN
Assessment of the flexural buckling resistance of bisymmetrical I-section beam-columns using FEM is widely discussed in the paper with regard to their imperfect model. The concept of equivalent geometric imperfections is applied in compliance with the so-called Eurocode’s general method. Various imperfection profiles are considered. The global effect of imperfections on the real compression members behaviour is illustrated by the comparison of imperfect beam-columns resistance and the resistance of their perfect counterparts. Numerous FEM simulations with regard to the stability behaviour of laterally and torsionally restrained steel structural elements of hot-rolled wide flange HEB section subjected to both compression and bending about the major or minor principal axes were performed. Geometrically and materially nonlinear analyses, GMNA for perfect structural elements and GMNIA for imperfect ones, preceded by LBA for the initial curvature evaluation of imperfect member configuration prior to loading were carried out. Numerical modelling and simulations were conducted with use of ABAQUS/Standard program. FEM results are compared with those obtained using the Eurocode’s interaction criteria of Method 1 and 2. Concluding remarks with regard to a necessity of equivalent imperfection profiles inclusion in modelling of the in-plane resistance of compression members are presented.
PL
W artykule przedstawiono obszerne studium numeryczne dotyczące wpływu kształtu i amplitudy imperfekcji o charakterze geometrycznym na nośność swobodnie podpartych elementów ściskanych i zginanych bez zwichrzenia o przekrojach dwuteowych bisymetrycznych walcowanych typu HEB. Imperfekcje przyjęto zgodnie z koncepcją równoważnych imperfekcji geometrycznych (która ujmuje zbiorczo zarówno wpływ losowych imperfekcji geometrycznych jak również materiałowych różnych typów) w odniesieniu do tak zwanej eurokodowej metody ogólnej [11].
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • 1. ABAQUS Theory manual, Version 6.1, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, 2000.
  • 2. ABAQUS/Standard User’s manual, Version 6.1, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, 2000.
  • 3. A. Aguero, L. Pallares, F.J. Pallares, “Equivalent geometric imperfection definition in steel structures sensitive to lateral torsional buckling due to bending moment”, Engineering Structures, 96, pp 41-55, 2015.
  • 4. A. Aguero, L. Pallares, F.J. Pallares, “Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression”, Engineering Structures, 96, pp 160-77, 2015.
  • 5. W.E. Ayrton, J. Perry, “On struts”, The Engineer, 62, pp 464-465, 1886.
  • 6. F. Bijlaard, M. Feldmann, J. Naumes, G. Sedlacek, “The “general method” for assessing the out-of-plane stability of structural members and frames and the comparison with alternative rules in EN 1993 – Eurocode 3 – Part 1-1”, Steel Construction, 3 (1), pp 19-33, 2010.
  • 7. A. Boissonnade, J.-P. Jaspart, J.-P. Muzeau, M. Villette, “New interaction formulae for beam-columns in Eurocode 3: The French–Belgian approach”, Journal of Constructional Steel Research, 60, pp 421-431, 2004.
  • 8. E. Chladny, M. Stujberova, “Frames with unique global and local imperfection in the shape of the elastic buckling mode”, Stahlbau, Part 1 – 82 (8), pp 609-617, 2013; Part 2 – 82 (9), pp 684-695, 2013.
  • 9. W.F. Chen, T. Atsuta, “Theory of Beam-Columns, Vol. 1, In-plane Behavior and Design”, McGraw-Hill, New York, 1976.
  • 10. C. Dou, Y. Pi, “Effects of Geometric Imperfections on Flexural Buckling Resistance of Laterally Braced Columns”, Journal of Structural Engineering, 142 (9), 2016.
  • 11. EN 1993-1-1, Eurocode 3: Design of Steel Structures, Part 1-1: General rules and rules for buildings. Brussels, European Committee for Standardization, 2005.
  • 12. M. Giżejowski, R. Szczerba, M. Gajewski, Z. Stachura, “Buckling resistance assessment of steel I-section beam-columns not susceptible to LT-buckling”, Archives of Civil and Mechanical Engineering, 17 (2), pp 205- 221, 2017 (in press).
  • 13. M. Giżejowski, Z. Stachura, “Buckling strength of a steel multi-storey framework according to Eurocode’s general method”, Proceedings of the XIII-th International Conference on Metal Structures, Zielona Gora, Poland, pp 154-155 (e-book on CD: pp 381-391), 2016.
  • 14. M. Giżejowski, Z. Stachura, M. Gajewski, R. Szczerba, “A new method of buckling resistance evaluation of laterally restrained beam-columns”, Proceedings of the XIII-th International Conference on Metal Structures, Zielona Gora, Poland, pp 102-103 (e-book on CD: pp 197-205), 2016.
  • 15. R. Gonçalves, D. Camotim, “On the incorporation of equivalent member imperfections in the in-plane design of steel frames”, Journal of Constructional Steel Research, 61 (9), pp 1226-1240, 2005.
  • 16. R. Greiner, J. Lindner, “Interaction formulae for members subjected to bending and axial compression in Eurocode 3–the Method 2 approach”, Journal of Constructional Steel Research, 62, 757-770, 2006.
  • 17. S. Jemioło, M. Gajewski, “Hyperelasto-plasticity”, Warsaw University of Technology Publishing House, Warsaw, 2014 [in Polish].
  • 18. A.S. Khan, S. Huang, “Continuum Theory of Plasticity”, John Wiley & Sons, Inc., New York, 1995.
  • 19. A. Kozłowski, R. Szczerba, “Design resistance of beam-column according to general method”, Proceedings of the 7th European Conference on Steel and Composite Structures EUROSTEEL, Naples, Italy, pp 155-156 (full paper – pen-drive 6p.), 2014.
  • 20. A. Lechner, “Flexural buckling of frames according to the new EC3 rules – a comparative, parametric study”, Proceedings of the International colloquium on stability and ductility of steel structures, Lisbon, Portugal, 2006.
  • 21. J. Lubliner, “Plasticity Theory”, Macmillan Publishing Company, New York, 1990.
  • 22. Sz. Pałkowski, “Basis of stability of steel rod structures”, Wyd. Uczelniane PK, Koszalin, 2016 [in Polish].
  • 23. F. Papp, “Buckling assessment of steel members through overall imperfection method”, Engineering Structures, 106, pp 124-136, 2016.
  • 24. F. Papp, A. Rubert, J. Szalai, “DIN EN 1993-1-1 based integrated stability analysis of 2D/3D steel structures”, Stahlbau, Part 1 – 83 (1), pp 1-15, 2014; Part 2 – 83 (2), pp 122-141, 2014; Part 3 – 83 (5), 325-342, 2014 [in German]
  • 25. K.J.R. Rasmussen, F. de Sena Cardoso, “On the next generation of design specifications for steel structures. Insights and Innovations in Structural Engineering, Mechanics and Computation”, Proceedings of the 6th International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa, 2016.
  • 26. J. Rondal, R. Maquoi, “Le Flambement des Collonnes en Acier”, Notice 1091, Chambre Syndicale des Fabricants de Tubes d’Acier, Paris, France, 1980 [in French].
  • 27. K. Rykaluk,. “Stability problems of metal structures”, Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2012 [in Polish].
  • 28. S. Shayan, K.J.R. Rasmussen, H. Zhang, “On the modelling of initial geometric imperfections of steel frames in advanced analysis”, Journal of Constructional Steel Research, 98, pp 167-177, 2014.
  • 29. L. Simões da Silva, L. Marques, C. Rebelo, “Numerical validation of the general method in EC3-1-1 for prismatic members”, Journal of Constructional Steel Research, 66, pp 575-590, 2010.
  • 30. L. Simoes da Silva, R. Simoes, H. Gervasio, “Design of Steel Structures, Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings”, ECCS Eurocode Design Manual, Ernst & Sohn, Berlin, 2010.
  • 31. T. Tankova, L. Simões da Silva, L. Marques, A. Andrade, “Proposal of an Ayrton-Perry design methodology for the verification of flexural and lateral-torsional buckling of prismatic beam-columns”, Proceedings of the 8th International Conference on Advances in Steel Structures, Lisbon, Portugal, 2015.
  • 32. A. Taras, “Derivation of DSM-type resistance functions for in-plane global buckling of steel beam-columns”, Journal of Constructional Steel Research, 125, pp 95-113, 2016.
  • 33. N.S. Trahair, M.A. Bradford, D.A. Nethercot, L. Gardner, “The Behaviour and Design of Steel Structures to EC3”, fourth ed., Taylor & Francis, London and New York, 2008.
  • 34. Z. Waszczyszyn, Cz. Cichoń, M. Radwańska, “Finite element method in stability assessment of structures”, Arkady, Warszawa, 1990 [in Polish]
  • 35. S. Weiss, M.A. Giżejowski, “Stability of metal structures. Rod structures”, Arkady, Warszawa, 1991 [in Polish].
  • 36. M. Życzkowski, “Stability of rods and rod structures”, in “Strength of structural elements” (eds. Z. Brzoska, Z. Kączkowski, J. Lipka, Z. Olesiak, M. Życzkowski), vol. IX, chapter III, PWN, Warsaw, 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb244779-9f5a-40bf-aea4-27c29f2cb131
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.