PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of loading characteristics and specimen size in split Hopkinson pressure bar test on high-rate behavior of phyllite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Split Hopkinson pressure bar (SHPB) tests are performed on Himalayan phyllite rock with five different specimen sizes and with different gas gun pressures and striker bar lengths of the SHPB device. The high-strain-rate phyllite parameters investigated are the peak stress, strain at peak stress, dynamic increase factor (DIF), strain energy absorbed, and dynamic modulus. It is observed that the dimensions of the phyllite specimens and the SHPB loading characteristics (i.e., the gas gun pressure and striker bar length) have a strong impact on the phyllite response. Given that SHPB specimen dimensions are small compared to any field rock mechanics problem, the rate-dependent rock mass properties are also determined for each rock using Hoek–Brown criteria. Numerical simluations of the SHPB tests are performed using finite element (FE) analysis in conjunction with the strain rate-dependent Johnson–Holmquist (JH-2) constitutive model to calibrate the JH-2 model parameters for phyllite. The calibrated JH-2 model parameters are dependent on the phyllite specimen size and on the magnitudes of the gas gun pressure and striker bar length. The different calibrated parameters corresponding to different specimen sizes and different SHPB loading characteristics are used to perform FE analysis of a tunnel constructed in phyllite rock and subjected to a blast load. The FE results show that the tunnel responses can significantly differ with strain rate-dependent JH-2 model parameters with difference in the mean stress and vertical displacement at the crown of the tunnel in the phyllite rock as high as 126% and 250%, respectively.
Rocznik
Strony
art. no. e212, 2022
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
  • Underground Construction & Tunneling, Colorado School of Mines, Golden, CO, USA
  • Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India
  • Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Bibliografia
  • [1] Aben FM, Doan M-L, Mitchell TM, Toussaint R, Reuschlé T, Fondriest M, Gratier J-P, Renard F. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones. J Geophys Res Solid Earth. 2016;121(4):2338–60.
  • [2] Ngo T, Mendis P, Gupta A, Ramsay J. Blast loading and blast effects on structures—an overview. Electron J Struct Eng Spec Issu Load Struct. 2007. https://doi.org/10.56748/ejse.671.
  • [3] Frew DJ, Forrestal MJ, Chen W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech. 2001;41(1):40–6.
  • [4] Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR. Review of experimental techniques for high-rate deformation and shock studies. Int J Impact Eng. 2004;30(7):725–75.
  • [5] Lu YB, Li QM, Ma GW. Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. Int J Rock Mech Min Sci. 2010;47(5):829–38.
  • [6] Perkins RD, Green SJ. Macroscopic description low and medium strain rates. Int J Rock Mech Min Sci. 1970;7:527–35.
  • [7] Zwiessler R, Kenkmann T, Poelchau MH, Nau S, Hess S. On the use of a split Hopkinson pressure bar in structural geology: high strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression. J Struct Geol. 2017;97:225–36.
  • [8] Mishra S, Meena H, Parashar V, Khetwal A, Chakraborty T, Matsagar V, Chandel P, Singh M. High strain rate response of rocks under dynamic loading using split Hopkinson pressure bar. Geotech Geoll Eng Springer. 2018;36(1):531–49. https://doi.org/10.1007/s10706-017-0345-2.
  • [9] Mishra S, Chakraborty T, Matsagar V, Loukus J, Bekkala B. High strain rate characterization of deccan trap rocks using SHPB device. J Mater Civil Eng ASCE. 2018;30(5):04018059-1–9.
  • [10] Sahoo PR, Akella VS. “Indicator” carbonaceous phyllite/graphitic schist in the Archean Kundarkocha gold deposit, Singhbhum Orogenic Belt, Eastern India: implications for gold mineralization vis-a-vis organic matter. J Earth Syst Sci. 2014;123:1693–703.
  • [11] Mishra S. “Characterization of high strain rate response of rock and its application in blast analysis of tunnels.” Ph.D. Thesis, IIT Delhi, India. 2019.
  • [12] Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL and Dai F. “Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials.” The ISRM suggested methods for rock characterization, testing, and monitoring: 2007–2014, International Society for Rock Mechanics Commission on Testing Methods. 2011.
  • [13] Martin BE, Heard WF, Loeffler CM, Nie X. Specimen size and strain rate effects on the compressive behavior of concrete. Exp Mech. 2017. https://doi.org/10.1007/s11340-017-0355-2.
  • [14] Xia K, Yao W. Dynamic rock tests using split Hopkinson (Kolsky) bar system—a review. Int J Rock Mech Geotech Eng. 2015;7(1):27–59.
  • [15] Chen W, Song B. Split Hopkinson (Kolsky) bar—design, testing and applications. Springer; 2011.
  • [16] Wang ZG, Meyer LW. On the plastic wave propagation along the specimen length in SHPB Test. Exp Mech. 2010;50:1061–74.
  • [17] Liao ZY, Zhu JB, Xia KW, Tang CA. Determination of dynamic compressive and tensile behavior of rocks from numerical tests of split Hopkinson pressure and tension bars. Rock Mech Rock Eng. 2016;49(10):3917–34.
  • [18] Hassan M, Wille K. Comparative experimental investigations on the compressive impact behavior of fiber-reinforced ultra high-performance concretes using split Hopkinson pressure bar. Constr Build Mater. 2018;191:398–410.
  • [19] Long X, Xu J, Wang S, Tang W, Chang C. Understanding the impact response of lead-free solder at high strain rates. Int J Mech Sci. 2020;172: 105416.
  • [20] Lv TH, Chen XW, Deng YJ, Chen G. Further numerical investigation on concrete dynamic behaviors with considering stress non-equilibrium in SHPB test based on the waveform features. Acta Mech Sin. 2020;36:873–86. https:// doi. org/ 10. 1007/s10409-020-00974-z.
  • [21] Al-Salloum Y, Almusallam T, Ibrahim SM, Abbas H, Alsayed S. Rate dependent behavior and modeling of concrete based on SHPB experiments. Cement Concr Compos. 2015;55:34–44.
  • [22] Hao Y, Hao H. Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mech Rock Eng. 2013;46(2):373–88.
  • [23] Kucewicz M, Baranowski P, Małachowski J. Dolomite fracture modeling using the Johnson-Holmquist concrete material model: parameter determination and validation. Int J Rock MechGeotech Eng. 2021;13(2):335–50.
  • [24] Zhu JB, Liao ZY, Tang CA. Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses. Rock Mech Rock Eng. 2016;49(10):3935–46.
  • [25] Tiwari R, Chakraborty T, Matsagar V. Dynamic analysis of tunnel in weathered rock subjected to internal blast loading. Rock Mech Rock Eng. 2016;49(11):4441–58.
  • [26] Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceramic Society. 1994;77(1):263–7.
  • [27] Mishra S, Khetwal A, Chakraborty T. Physio-mechanical characterisation of rocks. J Test Eval ASTM. 2019. https://doi.org/10.1520/JTE20180955.
  • [28] Mishra S, Khetwal A, Chakraborty T. Dynamic characterisation of gneiss. Rock Mech Rock Eng Springer. 2019;52(1):61–81.
  • [29] Mishra S, Chakraborty T. Determination of high strain rate stress-strain response of granite for blast analysis of tunnels. J Eng Mech ASCE. 2019;145(8):04019057-1–23. https:// doi. org/ 10. 1061/(ASCE)EM.1943-7889.0001627.
  • [30] Chakraborty T, Mishra S, Loukus J, Halonen B, Bekkala B. Characterization of three Himalayan rocks using a split Hopkinson pressure bar. Int J Rock Mech Min Sci. 2016;85:112–8.
  • [31] Gama BA, Lopatnikov SL, Gillespie JW Jr. Hopkinson bar experimental technique: a critical review. Trans ASME App Mech Rev. 2004;57:223–49.
  • [32] Hoek E, Brown ET. The Hoek-brown failure criterion and GSI—2018 edition. J Rock Mech Geotech Eng. 2018. https://doi.org/10.1016/j.jrmge.2018.08.001.
  • [33] Eberhardt E. The Hoek-Brown failure criterion. Rock Mech Rock Eng. 2012;45:981–8.
  • [34] Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. High-PresS Sci Technol Am Inst Phys. 1994;12:981–4.
  • [35] Mishra S, Chakraborty T, Basu D, Lam N. Characterization of sandstone for application in blast analysis of tunnel. Geotech Test J ASTM. 2020. https://doi.org/10.1520/GTJ20180270.
  • [36] Mishra S, Chakraborty T, Rao KS. Dynamic response of two extrusive igneous rocks using split hopkinson pressure bar test. J Mater Civil Eng ASCE. 2021;33(6):04021133.
  • [37] Barton NK. Rock quality, seismic velocity, attenuation and anisotropy. Abingdon-on-Thames: Taylor and Francis; 2006.
  • [38] Tiwari R, Chakraborty T, Matsagar V. Dynamic analysis of curved tunnels subjected to internal blast loading. In: Matsagar V, editor. Advances in structural engineering. New Delhi: Springer; 2015.
  • [39] Zhou Z, Cai X, Zhao Y, Chen L, Xiong C, Li X. Strength characteristics of dry and saturated rock at different strain rates. Trans Nonferrous Metals Soc China. 2016;26:1919–25.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb22f52c-d0ce-4de5-9da3-267f2bab95d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.