PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of fossils on diagenetically controlled reservoir quality : the Zechstein Brońsko Reef

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although the sedimentation and diagenesis of the Polish Zechstein Limestone strata (Ca1, Permian) already have been investigated, relatively little has been done to resolve their petrophysical potential. Therefore, the gap between sedimentological and petrophysical studies was bridged through an integrated analysis of geological and geophysical data. The results of core description, polarized-light microscopy, well log interpretations and laboratory measurements on core samples were combined with previously published nuclear magnetic resonance (NMR) and X-ray microtomography (μCT) data, especially helpful in the recognition of pore geometry. The Ca1 strata of the Brońsko-1 and Brońsko-2 wells, located on the Zechstein Brońsko Reef (West Poland), were studied to determine the influence of fossils on porosity and permeability. It was concluded that greater diversification of the original biota led to an increase in porosity and variation in pore geometry. While encrusting organisms such as foraminifers promoted the development of channel and fracture porosity, the dissolution of the primarily aragonitic bivalve and gastropod shells and the shells of terebratulid brachiopods often gave rise to the formation of cavernous and mouldic porosity. The channels appear to be most common in the bryozoan-foraminifer biofacies, representing a shallowing of the depositional environment. Caverns, in turn, corresponded to the organisms of the brachiopod-bryozoan and the lightly karstified bivalve-gastropod biofacies, both of which probably experienced the influence of sabkha conditions, leading to a general decrease in porosity. The bryozoan zoecia tended to enhance both primary intraparticle voids, and after their dissolution, secondary intraparticle pores, which showed limited connectivity in the high-energy Acanthocladia biofacies, where considerable fragmentation of fossils took place, hence decreasing the permeability. Anhydrite cementation was found to be the most pronounced factor controlling porosity destruction, while dolomitization enhanced it significantly, especially for the stromatolitic biofacies, where small, unconnected vugs were formed owing to this process. The permeability is typically below 100 mD, and this is caused by the rich diagenetic history of the reef, that recorded marine, sabkha-related and burial cementation, now represented by the different fabrics of anhydrite, calcite, and dolomite.
Słowa kluczowe
Rocznik
Strony
47--81
Opis fizyczny
Bibliogr. 85 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Fossil Fuels, Mickiewicza 30; 30-059 Kraków, Poland
Bibliografia
  • 1. Abdioğlu, E., Arslan, M., Aydinçakir, D. & Gündoğn, I., 2015. Stratigraphy, mineralogy and depositional environment of the evaporite unit in the Aşkale (Erzurum) sub-basin, Eastern Anatolia (Turkey). Journal of African Earth Sciences, Ill: 100-112.
  • 2. Ahr, W. M., Allen, D., Boyd, A., Bachman, H. N., Clerke, F. A., Gzara, K. B. M., Hassall, J. K., Murty, C. R. K., Zubari, H. & Ramamoorthy, R., 2005. Confronting the carbonate conundrum. Oilfield Review, 17: 18-29.
  • 3. Aleali, M., Rahimpour-Bonab, H., Moussavi-Harami, R. & Jahani, D., 2013. Environmental and sequence stratigraphic implications of anhydrite textures: A case from the Lower Triassic of the Central Persian Gulf. Journal of Asian Earth Sciences, 75: 110-125.
  • 4. Anovitz, L. M. & Cole, D. R., 2015. Characterization and analysis of porosity and pore structures. Reviews in Mineralogy and Geochemistry, 80: 61-164.
  • 5. Archie, G. E., 1942. Electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining and Metallurgical Engineers, 146: 54-67.
  • 6. Asquith, G. & Krygowski, D., 2004. Basic Well Log Analysis. AAPG Methods in Exploration, Series 16. American Association of Petroleum Geologists, Tulsa, 248 pp.
  • 7. Ballay, G., 2012. The "m " Exponent in Carbonate Petrophysics. http://www.geoneurale.com/documents/_m_Exponent.pdf, 18 pp. [15.05.2019].
  • 8. Becker, F. & Bechstädt, T., 2006. Sequence stratigraphy of a carbonate-evaporite succession (Zechstein l, Hessian Basin, Germany). Sedimentology, 53: 1083-1120.
  • 9. Clark, D. B., 1986. The distribution of porosity in Zechstein carbonates. In: Brooks, J. C. & van Hoorn, B. (eds), Habitat of Palaeozoic Gas in N. W. Europe .Geological Society Special Publication, 23: 121-149.
  • 10. Choquette, P. W. & James, N. P., 1988. Introduction. In: Choquette, P. W. & James, N. P. (eds), Paleokarst. Springer, New York, pp. 1-21.
  • 11. Choquette, P. W. & Pray, L. C., 1970. Geological nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54: 207-250.
  • 12. Crain, E. R., 1986. The Log Analysis Handbook (Quantitative Log Analysis Methods). Pennwell Corp, Tulsa, 684 pp.
  • 13. Demicco, R. V. & Hardie, L. A., 1994. Sedimentary Structures and Early Diagenetic Features of Shallow Marine Carbonate Deposits. SEPM Society for Sedimentary Geology, Tulsa, 272 pp.
  • 14. Desrochers, A. & James, N. P., 1988. Early Paleozoic surface and subsurface paleokarst: Middle Ordovician Carbonates, Mingan Islands, Quebec. In: Choquette, P. W. & James, N. P. (eds), Paleokarst. Springer, New York, pp. 183-210.
  • 15. Doornenbal, J. C., Abbink, O. A., Duin, E. J. T., Dusar, M., Hoth, P., Jasionowski, M., Lott, G. K., Mathiesen, A., Papiernik, B., Peryt, T. M., Veldkamp, J. G. & Wirth, H., 2010. Introduction, stratigraphic framework and mapping. In: Doornenbal, J. C. & Stevenson A. G. (eds), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp. 1-9.
  • 16. Dyjaczyński, K., Górski, M., Mamczur, S. & Peryt, T. M., 2001. Reefs in the basinal facies of the Cal (upper Permian) of western Poland: a new gas play. Journal of Petroleum Geology, 24: 265-285.
  • 17. Dyjaczyński, K., Mamczur, S. & Radecki, S., 1997. New perspectives for gas deposits’ prospection within the Zechstein Limestone strata, Foresudetic Monocline. Przegląd Geologiczny, 45: 1248-1256. [In Polish, with English summary.]
  • 18. Eggie, L. A., Pietrus, E., Ramdoyal, A. & Chow, N., 2014. Diagenesis of the Lower Silurian Ekwan River and Attawapiskat formations, Hudson Bay Lowland, northern Manitoba (parts of NTS 54B, F, G). In: Report of Activities, Manitoba Mineral Resources, Manitoba Geological Survey, GS-14: 161-171.
  • 19. Evamy, B. D., 1963. The application of a chemical staining technique to a study of dedolomitization. Sedimentology, 2: 164-170.
  • 20. Fheed, A. & Krzyżak, A., 2017. A textural and diagenetic assessment of the Zechstein Limestone carbonates, Poland using the transverse Nuclear Magnetic Resonance relaxometry. Journal of Petroleum Science and Engineering, 152: 538-548.
  • 21. Fheed, A. & Krzyżak, A., 2018. Diffusion-weighted nuclear magnetic resonance imaging (DWI) for fluid flow direction and intensity recognition in carbonates - examples from Permian reefs. In: SEG/AAPG/EAGE/SPE Research and Development Petroleum Conference and Exhibition, RDP 2018, Abu Dhabi, May 9-10,2018. Society of Exploration Geophysicists Global Meeting Abstracts, pp. 140-143.
  • 22. Fheed, A., Krzyżak, A. & Lalowicz, Z., 2017. Fossil-related porosity scanning by means of the nuclear magnetic resonance and computed microtomography - the Permian Bronsko Reef carbonates, Western Poland. In: International Multidisciplinary Scientific Geoconference Surveying Geology and Mining Ecology Management, SGEM, 17 (14), pp. 667-675.
  • 23. Fheed, A., Krzyżak, A. & Świerczewska, A., 2018. Exploring a carbonate reef reservoir - nuclear magnetic resonance and computed microtomography confronted with narrow channel and fracture porosity. Journal of Applied Geophysics, 151: 343-358.
  • 24. Fheed, A. & Strzelecki, P. J., 2017. X-ray microtomography-based pore structure analysis of the Permian Reef rocks (West Poland). In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17 (15), pp. 661-667.
  • 25. Fheed, A., Świerczewska, A. & Krzyżak, A., 2015. The isolated Wuchiapingian (Zechstein) Wielichowo Reef and its sedimentary and diagenetic evolution, SW Poland. Geological Quarterly, 59: 762-780.
  • 26. Flügel, E., 2010. Microfacies of Carbonate Rocks. 2nd Edition. Springer, Berlin, 984 pp.
  • 27. Frykman, P., Stentoft, N., Rasmussen, K. L., Christensen, O. W., Andersen, P. V. & Jacobsen, F. L., 1990. Diagenesis and porous system in Danish Zechstein carbonate reservoirs. Geological Survey of Denmark, 31: 1-107.
  • 28. Fu, Q. & King, H., 2010. Medium and coarsely crystalline dolomites in the Middle Devonian Ratner Formation, southern Saskatchewan, Canada: Origin and pore evolution. Carbonates and Evaporites, 26: 111-125.
  • 29. Füchtbauer, H., 1964. Facies, Porosität und Gasinhalt der Karbonatgesteine des norddeutschen Zechsteins. Zeitschrift der Deutschen Geologischen Gesellschaft, 114: 484-531.
  • 30. Füchtbauer, H., 1980. Composition and diagenesis of a stromatolitic bryozoan bioherm in the Zechstein 1 (northwestern Germany). Contributions to Sedimentology, 9: 233-251.
  • 31. Geluk, M. C., 2000. Late Permian (Zechstein) carbonate-facies maps, the Netherlands. Netherlands Journal of Geoscience, 79: 17-27.
  • 32. Hara, U., Słowakiewicz, M. & Raczyński, P., 2013. Bryozoans (trepostomes and fenestrates) in the Zechstein Limestone (Wuchiapingian) of the North Sudetic Basin (SW Poland): palaeoecological implications. Geological Quarterly, 57: 417-432.
  • 33. Harris, P. M., Kendall, C. G. & Lerche, I., 1985. Carbonate Cementation - a brief review. In: Schneidermann, N. & Harris, P. M. (eds), Carbonate Cements. Society of Economic Paleontologists and Mineralogists Special Publication, 36: 79-95.
  • 34. Hollingworth, N. & Pettigrew, T., 1988. Zechstein Reef Fossils and their Palaeoecology. Palaeontological Association, University Printing House, Oxford, 75 pp.
  • 35. Hollingworth, N. T. J. & Tucker, M. E., 1987. The Upper Permian (Zechstein) Tunstall Reef of North East England: Palaeoecology and early diagenesis. Lecture Notes in Earth Sciences, 10: 23-50.
  • 36. Hu, X. & Huang, S., 2017. Physical properties of reservoir rocks. In: Xuetao, H., Shuyong, H., Fayang, J. & Huang, S. (eds), Physics of Petroleum Reservoirs, Second Edition. Springer Geophysics, Berlin, pp. 7-164.
  • 37. Jasionowski, M., Durakiewicz, T. & Peryt, T. M., 2000. Rafy wapienia cechsztyńskiego (Ca1) na wyniesieniu wolsztyńskim w świetle badań stabilnych izotopów tlenu i węgla. Przegląd Geologiczny, 48: 468. [In Polish.]
  • 38. Jasionowski, M., Peryt, T. M. & Durakiewicz, T., 2014. Polyphase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-Ridge, Fore-Sudetic Monocline, SW Poland). Geological Quarterly, 58: 483-500.
  • 39. Kaldi, J., 1986. Diagenesis of nearshore carbonate rocks in the Sprotbrough Member of the Cadeby (Magnesian Limestone) Formation (Upper Permian) of eastern England. In: Harwood, G. N. & Smith, D. B. (eds), The English Zechstein and Related Topics. Geological Society Special Publication, 22: 87-102.
  • 40. Karaca, E., 2015. Pore structure and petrophysical characterization of Hamelin Pool stromatolites and pavements, Shark Bay, Western Australia. Open Access Theses, 567: 1-141.
  • 41. Kerans, C. & Donaldson, J. A., 1988. Proterozoic paleokarst profile, Dismal Lakes Group, N.W.T. Canada. In: Choquette, P. W. & James, N. P. (eds), Paleokarst. Springer, New York, pp. 167-182.
  • 42. Kerkmann, K., 1969. Riffe und Algenbänke im Zechstein von Thüringen. Freiberger Forschungshefte, C 252: 1-85.
  • 43. Kiersnowski, H., Peryt, T. M., Buniak, A. & Mikołajewski, Z., 2010. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal, 45: 319-335.
  • 44. Laongsakul, P. & Dürrast, H., 2011. Characterization of reservoir fractures using conventional geophysical logging. Songklanakarin Journal of Science and Technology, 33: 237-246.
  • 45. Luthi, S. M., 2013. Geological Well Logs: Their Use in Reservoir Modeling. Springer Science & Business Media, Berlin, 373 pp.
  • 46. Machel, H. G., 2004. Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite, C. J. R., Rizzi, G. & Darke, G. (eds), The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society Special Publication, 235: 7-63.
  • 47. Machel, H. G. & Burton, E. A., 1991. Burial-diagenetic sabkha-like gypsum and anhydrite nodules. Journal of Sedimentary Petrology, 61: 394-405.
  • 48. Mazzullo, S. J., 2004. Overview of porosity evolution in carbonate reservoirs. Kansas Geological Society Bulletin, 79: 22-27.
  • 49. Mikołajewski, Z., Buniak, A. & Chmielowiec-Stawska, A., 2009. Charakterystyka właściwości zbiornikowych w rafowych utworach wapienia cechsztyńskiego (Ca1) na przykładzie złoża Brońsko. Przegląd Geologiczny, 57: 309-310. [In Polish.]
  • 50. Moore, C. H., 1989. Carbonate diagenesis and porosity. In: Moore,. C. H. (ed.), Introduction to Diagenesis in the Meteoric Environment, VI. Developments in Sedimentology, 46: 161-175.
  • 51. Moore, C. H. & Wade, W. J., 2013. Carbonate reservoirs: porosity and diagenesis in a sequence stratigraphic framework. In: Moore, C. H. & Wade, W. J. (eds), Carbonate Diagenesis: Introduction and Tools, V. Developments in Sedimentology, 67: 67-89.
  • 52. Nollet, S., Hilgers, C. & Urai, J., 2005. Sealing of fluid pathways in overpressure cells: a case study from the Buntsandstein in the Lower Saxony Basin (NW Germany). International Journal of Earth Sciences, 94: 1039-1055.
  • 53. Nusara, S., Punya, C., Sarunya, P. & Ken-Ichiro, H., 2017. Petrology and alteration of calcium sulphate deposits in late Paleozoic rocks of Wang Saphung area, Loei province, Thailand. Journal of Earth Science and Climatic Change, 8: 384.
  • 54. Paul, J., 1980. Upper Permian algal stromatolite reefs, Harz Mountains (F.R. Germany). Contributions to Sedimentology, 9: 253-268.
  • 55. Paul, J., 2010. Zechstein reefs in Germany. In: Doornenbal, J. C. & Stevenson, A. G. (eds), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp. 142-144.
  • 56. Peryt, D., Peryt, T. M., Raczyński, P. & Chłódek, K., 2012. Foraminiferal colonization related to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland. Geological Quarterly, 56: 529-546.
  • 57. Peryt, T. M., 1984. Sedimentation and early diagenesis of the Zechstein Limestone in Western Poland. Prace Instytutu Geologicznego, 109: 1-80. [In Polish, with English summary.]
  • 58. Peryt, T. M. & Peryt, D., 2012. Geochemical and foraminiferal records of environmental changes during Zechstein Limestone (Lopingian) deposition in northern Poland. Geological Quarterly, 56: 187-198.
  • 59. Peryt, T. M., Raczyński, P., Peryt, D. & Chłódek, K., 2012. Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Cal), western Poland. Geological Journal, 47: 537-552.
  • 60. Peryt, T. M., Raczyński, P., Peryt, D., Chłódek, K. & Mikołajewski, Z., 2016. Sedimentary history and biota of the Zechstein Limestone (Permian, Wuchiapingian) of the Jabłonna Reef in western Poland. Annales Societatis Geologorum Poloniae, 86: 379-413.
  • 61. Pharaoh, T. C., Dusar, M., Geluk, M., Kockel, F., Krawczyk, C., Krzywiec, P., Schneck-Wenderoth, M., Thybo, H., Vejbaek, O. & Wees, J.-D. van, 2010. Tectonic evolution. In: Petroleum Geological Atlas of the Southern Permian Basin Area, EAGE Publications b.v., Houten, pp. 25-58.
  • 62. Pikulski, L. & Wolnowski, T., 2005. Geological Analysis of the Zechstein Limestone Formations (Cal) in Western Poland. In: AAPG Search and Discovery. AAPG/EAGE International. Research Conference, El Paso, Texas, October 1-5, 2005, p. 50.
  • 63. Raczyński, P., 2000. Zespoły organizmów w kompleksie rafowym wapienia cechsztyńskiego (Ca1) na wyniesieniu wolsztyńskim. Przegląd Geologiczny, 48: 469-470. [In Polish.]
  • 64. Raczyński, P., Peryt, T. M., Peryt, D., 2016. Sedimentary history of two Zechstein Limestone carbonate buildups (Elżbieciny and Racot) in western Poland: the reefs that were. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 167: 191-210.
  • 65. Raczyński, P., Peryt, T. M. & Strobel, W., 2017. Sedimentary and environmental history of the Late Permian Bonikowo Reef (Zechstein Limestone, Wuchiapingian), western Poland. Journal of Palaeogeography, 6: 183-205.
  • 66. Reijers, T. J. A., 2012. Sedimentology and diagenesis as ‘hydrocarbon exploration tools’ in the Late Permian Zechstein-2 Carbonate Member (NE Netherlands). Geologos, 18: 163-195.
  • 67. Roshnan, H., Sari, M., Arandiyan, H., Hu, Y., Mostaghimi, P., Sar- madivaleh, M., Masoumi, H., Veveakis, M., Iglauer, S. & Regenauer-Lieb, K., 2019. Total porosity of tight rocks: a welcome to the heat transfer technique. Energy Fuels, American Chemical Society, 30: 10072-10079.
  • 68. Schlumberger, 1989. Log Interpretation Principles/Applications. Schlumberger Wireline & Testing, cl99l, Houston, Texas, 24l pp.
  • 69. Schlumberger, 2014. Techlog 2014: User’s Manual. Schlumberger Limited, Houston.
  • 70. Scholle, P. A. & Ulmer-Scholle, D. S., 2003. A Colour Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. AAPG Memoir, 77: 1-474.
  • 71. Schön, J., 2015. Basic Well Logging and Formation Evaluation: Bookboon.com, London, 179 pp.
  • 72. Smith, D. B., 1970. Submarine slumping and sliding in the lower Magnesian Limestone of Northumberland and Durham. Proceedings of the Yorkshire Geological Society, 38: 1-36.
  • 73. Smith, D. B., 1972. Foundered strata, collapse-breccias and subsidence features of the English Zechstein. In: Geology of Saline Deposits: Proceedings of the Hannover Symposium. UNESCO, Paris, pp. 255-269.
  • 74. Smith, D. B., 1980. The evolution of the English Zechstein basin. Contributions to Sedimentology, 9: 7-34.
  • 75. Smith, D. B., 1986. The Trow Point Bed-a deposit of Upper Permian marine oncoids, peloids and columnar stromatolites in the Zechstein of NE England. In: Harwood, G. M. & Smith, D. B. (eds), The English Zechstein and Related Topics. Geological Society Special Publication, 22: 113-125.
  • 76. Smith, D. B., 1995. Marine Permian of England. Geological Conservation Review Series, Chapman and Hall, 8, London, 205 pp.
  • 77. Stanley, G. D., 2001. Introduction to reef ecosystems and their evolution. In: Stanley, G. D. (ed.), The History and Sedimentology of Ancient Reef Systems. Springer Science & Business Media, New York, pp. 1-40.
  • 78. Steinhoff, I. & Strohmenger, C., 1996. Zechstein 2 carbonate platform subfacies and grain-type distribution (Upper Permian, Northwest Germany). Facies, 35: 105-132.
  • 79. Taylor, P. D. & Wilson, M. A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62: 1-103.
  • 80. Tucker, M. E. & Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Science, Oxford, 482 pp.
  • 81. Van Der Baan, D., 1990. Zechstein reservoirs in the Netherlands. In: Brooks, J. (ed.), Classic Petroleum Provinces. Geological Society Special Publication, 50: 379-398.
  • 82. Walter, L. M., 1985. Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis. In: Schneidermann, N. & Harris, P. M. (eds), Carbonate Cements. Society of Economic Paleontologists and Mineralogists Special Publications, 36: 3-16.
  • 83. Warren, J. K., 2016. Evaporites: A Geological Compendium. Springer, Berlin, 1854 pp.
  • 84. Weidlich, O., 2002. Middle and Late Permian reefs - distributional patterns and reservoir potential. In: Kiessling, W., Flügel, E. & Golonka, J. (eds), Phanerozoic Reef Patterns. SEPM Society for Sedimentary Geology Special Publication, 72: 339-390.
  • 85. Wyllie, M. R. J., Gregory, A. R. & Gardner, G. H. F., 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23: 459-493.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb19e506-b37e-4f38-aa1e-9ee4a0871b19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.