PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface roughness of photoacrylic resin shapes obtained using PolyJet additive technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Chropowatość powierzchni próbek wykonanych z żywicy fotoakrylowej otrzymanych przy użyciu technologii przyrostowej PolyJet
Języki publikacji
EN
Abstrakty
EN
The article presents the results of analyzing the surface roughness of samples manufactured using the PolyJet additive technology. Three types of photopolyacrylic resins were used in the production process of the test samples. The samples were measured using stylus and optical measurement methods. The presented research extends information on the surface roughness of resins used in the PolyJet 3D printing process. It is a starting point for further improvement of measurement procedures for polymer materials.
PL
Zbadano chropowatość powierzchni kształtek wykonanych z trzech rodzajów żywic foto poliakrylowych metodą przyrostową PolyJet. Stosowano stykową i optyczną metodę pomiarową. Przedstawione badania poszerzają wiedzę w zakresie chropowatości powierzchni żywic stosowanych w procesie druku metodą PolyJet oraz stanowią punkt wyjścia do dalszych badań dotyczących usprawniania procedur pomiarowych w odniesieniu do próbek wykonanych z materiałów polimerowych.
Czasopismo
Rocznik
Strony
631--639
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Manufacturing Techniques and Automation, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Manufacturing Techniques and Automation, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Mechanical Technology, 5 M. Sklodowska-Curie Square, 60-965 Poznan, Poland
Bibliografia
  • [1] Thompson M.K., Moroni G., Vaneker T. et al.: CJRP Annals 2016, 65, 737. https://doi.org/10.1016/j.cirp.2016.05.004
  • [2] Gibson I., Rosen D.S.B.: “Additive Manufacturing Technologies” Springer-Verlag, New York, New York 2014.
  • [3] ISO/ASTM 52900 Additive manufacturing — General principles — Fundamentals and vocabulary. ISO, Geneva, Switzerland, 2021.
  • [4] ISO/ASTM 52910 Additive Manufacturing—Design— Requirements, Guidelines and Recommendations. ISO, Geneva, Switzerland, 2018.
  • [5] Gisario A., Kazarian M., Martina F. et al.: Journal of Manufacturing Systems 2019, 53, 124. https://doi.org/10.1016/j.jmsy.2019.08.005
  • [6] Rokicki P., Budzik G., Kubiak K. et al.: Aircraft Engineering and Aerospace Technology 2016, 88, 374. https://doi.org/10.1108/aeat-01-2015-0018
  • [7] Leal R., Barreiros F.M., Alves L. et al.: The International Journey of Advanced Manufacturing Technology 2017, 92, 1671. https://doi.org/10.1007/s00170-017-0239-8
  • [8] Ciocca L., Mazzoni S., Fantini M. et al.: Medical and Biological Engineering and Computing 2012, 50, 743. https://doi.org/10.1007/s11517-012-0898-4
  • [9] Turek P., Budzik G., Oleksy M. et al.: Polimery 2020, 65(7-8), 510. https://doi.org/10.14314/polimery.2020.7.2
  • [10] Chen L., Lin W.S., Polido W.D. et al.: The Journal of Prosthetic Dentistry 2019, 122(3), 309. https://doi.org/10.1016/j.prosdent.2019.02.007
  • [11] Shim J.S., Kim J.E., Jeong S.H. et al.: The Journal of Prosthetic Dentistry 2020, 124(4), 46M75, https://doi.org/10.1016/j.prosdent.2019.05.034
  • [12] Budzik G., Woźniak J., Paszkiewicz A. et al.: Materials 2021, 14(9), 2202. https://doi.org/10.3390/ma14092202
  • [13] Turek P., Budzik G.: Polymers 2021, 13(14), 2271. https://doi.org/10.3390/polym13142271
  • [14] Jawade S., Kakandikar G.: Journal of Electrochemical Science and Engineering 2023, 13(1), 127. https://doi.org/10.5599/jese.1286
  • [15] Majeed A., Ahmed A., Salam A. et al.: International Journal of Lightweight Materials and Manufacture 2019, 2(4), 288. https://doi.org/10.1016/j.ijlmm.2019.08.001
  • [16] Golhin A. P., Tonello R., Frisvad J. R. et al.: The International Journal of Advanced Manufacturing Technology 2023, 127, 987. https://doi.org/10.1007/s00170-023-11566-z
  • [17] Gülcan O., Günaydın K., Çelik A.: Aerospace 2022, 9(2), 82. https://doi.org/10.3390/aerospace9020082
  • [18] Pandey P., Nayak A., Taufik M.: Advances in Materials and Processing Technologies 2022, 1, https://doi.org/10.1080/2374068x.2022.2097416
  • [19] Wei X., Thakare K., Zeng L., Pei Z.: “Experimetal Investigation of Stratasys J750 PolyJet Printer: Effects of Finish Type and Shore Hardness on Dimensional Accuracy” in “Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 2” Processes; Materials” Erie, Pennsylvania 2019. https://doi.org/10.1115/msec2019-2999
  • [20] Junk S., Schrock S., Schmieder N.: “International Conference on Additive Manufacturing in Products and Applications 2023”, Springer Cham, Switzerland 2023. p. 35. https://doi.org/10.1007/978-3-031-42983-5_3
  • [21] Vieten T., Stahl D., Schilling P., Civelek F. et al.: Micromachines 2021, 12(7), 730. https://doi.org/10.3390/mi12070730
  • [22] Turek P., Budzik G., Sęp J. et al.: Polymers 2020, 12(12), 3029. https://doi.org/10.3390/polym12123029
  • [23] Herschdorfer L., Negreiros W.M., Gallucci G.O. et al.: The Journal of Prosthetic Dentistry 2021, 125(6), 905. https://doi.org/10.1016/j.prosdent.2020.03.017
  • [24] Yap Y.L., Wang C., Sing S.L. et al.: Precision Engineering 2017, 50, 275. https://doi.org/10.1016/j.precisioneng.2017.05.015
  • [25] Yang H., Lim J. C., Liu Y., Qi X. et al.: Virtual and physical prototyping 2017, 12, 95. https://doi.org/10.1080/17452759.2016.1242915
  • [26] Khoshkhoo A., Carrano A.L., Blersch D.M.: Rapid Prototyping Journal 2018, 24, 1563. https://doi.org/10.1108/rpj-10-2017-0210
  • [27] Kumar K., Kumar G.S.: Virtual and Physical Prototyping 2015, 10, 23. https://doi.org/10.1080/17452759.2014.999218
  • [28] Udroiu R., Braga I.C., Nedelcu A.: Materials 2019, 12, 995. https://doi.org/10.3390/ma12060995
  • [29] Holman R. K., Cima M. J., Uhland S. A. et al.: Journal of Colloid and Interface Science 2002, 249, 432. https://doi.org/10.1006/jcis.2002.8225
  • [30] Udroiu R., Mihail L. A.: „Experimental determination of surface roughness of parts obtained by rapid prototyping”. Proceedings of the 8th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal processing (CSECS’09), p. 283.
  • [31] ISO 21920-2 Geometrical product specifications (GPS) Surface texture: Profile Part 2: Terms, definition and surface texture parameters, ISO, Geneva, Switzerland, 2021.
  • [32] ISO 25178-2 Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters, ISO, Geneva, Switzerland, 2021.
  • [33] Pawlus P., Reizer R., Wieczorowski. M.: Metrology and Measurement Systems 2018, 25, 589. https://doi.org/10.24425/123894
  • [34] Pawlus P.: Measurement 2007, 40(6), 672. https://doi.org/10.1016/j.measurement.2006.07.009
  • [35] Pawlus P., Reizer R., Wieczorowski M.: Metrology and Measurement Systems 2017, 24, 525. https://doi.org/10.1515/mms-2017-0046
  • [36] ISO 3274 Geometrical Product Specifications (GPS) — Surface texture: Profile method — Nominal characteristics of contact (stylus) instruments, ISO, Geneva, Switzerland, 1996.
  • [37] Bazan A., Kawalec A., Rydzak T. et al.: Materials 2020, 14, 6. https://doi.org/10.3390/ma14010006
  • [38] Launhardt M., Wörz A ., Loderer A. et al.: Polymer Testing 2016, 53, 217. https://doi.org/10.1016/j.polymertesting.2016.05.022
  • [39] Zhang X., Zheng Y., Suresh V. et al.: Journal of Manufacturing Processes 2020, 53, 310. https://doi.org/10.1016/j.jmapro.2020.02.037
  • [40] Leach R.: „Advances in Optical Surface Texture Metrology”, IOP Publishing Ltd, Bristol 2020. https://doi.org/10.1088/978-0-7503-2528-8
  • [41] Leach R.: „Optical Measurement of Surface Topography”, Springer Berlin, Heidelberg 2011. https://doi.org/10.1007/978-3-642-12012-1
  • [42] Bazan A., Turek P., Przeszłowski Ł.: Journal of Mechanical Science and Technology 2021, 35, 1167. https://doi.org/10.1007/s12206-021-0230-z
  • [43] Bazan A., Turek P., Sułkowicz P. et al.: Machines 2023, 11(6), 615. https://doi.org/10.3390/machines11060615
  • [44] Bezak T., Kusy M., Elias M. et al.: Applied Mechanics and Materials 2014, 693, 329. https://doi.org/10.4028/www.scientific.net/amm.693.329
  • [45] Zheng Y., Zhang X., Wang S. et al.: Optics and Lasers in Engineering 2020, 126, 105920. https://doi.org/10.1016/j.optlaseng.2019.105920
  • [46] Newton L., Senin N., Gomez C., Danzl R. et al.: Additive Manufacturing 2019, 25, 365. https://doi.org/10.1016/j.addma.2018.11.013
  • [47] Danzl R., Helmli F., Scherer S.: Strojniśki vestnik — Journal of Mechanical Engineering 2011, 57, 245. https://doi.org/10.5545/sv-jme.2010.175
  • [48] Triantaphyllou A., Giusca C.L., Macaulay G.D. et al.: Surface Topography: Metrology and Properties 2015, 3, 024002, https://doi.org/10.1088/2051-672x/3/2/024002
  • [49] Yang H., Lim J.C., Liu Y. et al.: Virtual and Physical Prototyping 2017, 12, 95. https://doi.org/10.1080/17452759.2016.1242915
  • [50] Zmarzły P., Kozior T., Gogolewski D.: Tehnički vjesnik 2019, 26(6), 1576. https://doi.org/10.17559/TV-20181109115954
  • [51] Bazan A., Turek P., Przeszłowski Ł.: Surface Topography: Metrology and Properties 2022, 10, 035021. https://doi.org/10.1088/2051-672x/ac85cf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb168cbe-e098-4a27-ab76-780631f273f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.