PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the problem of detecting source points acting on a fluid

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The detection problem of a finite number of source points acting on a steady incompressible fluid flow from overdetermined boundary data was studied. The approach used in this study deals with the topological sensitivity technique. An asymptotic analysis of a prescribed cost function with respect to the domain perturbation was developed. Some numerical results to illustrate the efficiency and robustness of the developed source point detection algorithm were presented.
Wydawca
Rocznik
Strony
art. no. 20230108
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia
  • Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia
Bibliografia
  • [1] C. Alves and A. Silvestre, On the determination of point-forces on a Stokes system, Math. Comput. Simulat. 66 (2004), no. 4, 385–397.
  • [2] T. Gotz, Simulating particles in Stokes flow, J. Comput. Appl. Math. 175 (2005), no. 2, 415–427.
  • [3] H. Zhou and C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, J. Comput. Phys. 117 (1995), no. 1, 79–89.
  • [4] M. Ouni, A. Habbal and M. Kallel, Determination of point-forces via extended boundary measurements using a game strategy approach, Proceeding of CARI, 2020, pp. 1–8.
  • [5] M. Abdelwahed and N. Chorfi, Inverse problem resolution via Khon-vogelius formulation an topological sensitivity method, Fractals 30 (2022), no. 10, 1–6.
  • [6] S. Garreau, Ph. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim. 39 (2001), no. 6, 1756–1778.
  • [7] Ph. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim. 43 (2004), no. 1, 1–31.
  • [8] M. Hassine and M. Masmoudi, The topological sensitivity analysis for the Quasi-Stokes problem, COCV J. 10 (2004), no. 4, 478–504.
  • [9] M. Abdelwahed, M. Bensaleh, N. Chorfi and M. Hassine, An inverse problem study related to a fractional diffusion equation, J. Math. Anal. Appl. 512 (2022), no. 2, 126–154.
  • [10] J. Sokolowski and V. Zochowski, On the topological derivative in shape optimization, SIAM J. Control Optim. 37 (1999), no. 4, 1251–1272.
  • [11] M. Abdelwahed and N. Chorfi, Spectral discretization of the time-dependent Navier-Stokes problem with mixed boundary conditions, Adv. Nonlinear Anal. 11 (2022), no. 1, 1447–1465.
  • [12] S. Andrieux and A. Ben Abda, Identification of planar cracks by complete overdetermined data: inversion formulae, Inverse Problems 12 (1996), no. 5, 553–563.
  • [13] A. Friedman and M. Vogelius, Identification of small inhomogeneties of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Rat. Mech. Anal. 105 (1989), 299–326.
  • [14] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math. 37 (1984), no. 3, 289–298.
  • [15] M. Jenaliyev, M. Ramazanov, and M. Yergaliyev, On the numerical solution of one inverse problem for a linearized two-dimensional system of Navier-Stokes equations, Opuscula Math. 42 (2022), no. 5, 709–725.
  • [16] J. W. He, Y. Zhou, L. Peng, and B. Ahmad, On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on RN, Adv. Nonlinear Anal. 11 (2022), no.1, 580–597.
  • [17] R. Temam, Navier Stokes equations: Theory and Numerical Analysis, North-Holland Publishing Company, 1979.
  • [18] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms, Springer Verlag, Berlin, 1986.
  • [19] H. Brezis, Analyse fonctionnelle: Théorie et applications, Masson, New York, 1983.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb16490a-fe8a-4c16-aa5e-629dafb001b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.