PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To investigate the fatigue crack growth at normal tension and transverse shear of 65G steel with the high tempered martensite microstructure and to build an appropriate fatigue crack growth rate curves. To determine the main and auxiliary fatigue crack growth resistance characteristics, which are necessary for machine parts life-time estimation at rolling contact fatigue conditions. Design/methodology/approach: For determination of fatigue crack growth resistance at normal tension a standard compact specimens with edge crack were tested using a hydraulic testing machine and fatigue testing at transverse shear were performed on the I-beam specimens with the edge longitudinal crack using the original testing setup. For crack growth measurement an optical cathetometer B-630 was used. The crack growth rate V was calculated as crack length increment during loading cycles. The stress intensity factor range K was determined by dependence "K = (1 – R)Kmax accordingly to the standard test methods. To establish crack faces friction factor at transverse shear fragments of fractured beam specimen containing crack faces were cut out and tested as a friction pair according to Amontons Coulomb's law. On the base of test results the fatigue crack growth rate curves in logarithmic coordinates "K vs. V were built. These graphical dependencies for normal tension and transverse shear were used for determination of fatigue crack growth resistance characteristics: fatigue threshold "Kth, fracture toughness "Kfc, "K1-2 and "K2-3 which indicates the beginning and the end of middle-amplitude region of curve, "K*, parameters C and n of Paris’s equation. Metallographic and fractographic analyses were performed on the scanning electronic microscope Zeiss EVO 40XVP. Findings: Empirical dependences of the stress intensity factor range on fatigue crack growth rate at normal tension and transverse shear of 65G steel with the high tempered martensite microstructure are obtained. Based on these graphical dependencies the fatigue thresholds and fracture toughness as well as the parameters of Paris’s equation are determined. Research limitations/implications: The fatigue crack growth on 65G steel under low-, medium- and high-amplitude cyclic loading at normal tension and transverse shear was investigated. The fatigue crack growth rate values for a wide range of stress intensity factor are estimated. On the base of fractographical analysis the features of fracture of high tempered martensite in 65G steel at transverse shear are studied. It is shown that the transverse shear crack faces friction factor for high tempered martensite structure is less than for low tempered martensite. Practical implications: Using the fatigue crack growth resistance characteristics of 65G steel at normal tension and transverse shear and related fatigue crack growth rate curves it is possible to predict the life-time of machine parts made of steels with high tempered martensite structure, working at rolling contact fatigue conditions. Originality/value: Complete fatigue crack growth rate curves of 65G steel with tempered martensite structure at normal tension and transverse shear are built and the fatigue crack growth resistance characteristics for both modes of fracture are determined for the first time.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, ul. Naukova 5, Lviv 79060, Ukraine
autor
  • Lviv Polytechnic National University, ul. Bandera 12, Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, ul. Bandera 12, Lviv, 79013, Ukraine
  • Katolicki Uniwersytet Lubelski Jana Pawła II, Al. Racławickie 14, 20-950 Lublin, Poland
  • Hetman Petro Sahaidachnyi National Army Academy, ul. Heroes of Maidan 32, Lviv 79012, Ukraine
  • Lviv Polytechnic National University, ul. Bandera 12, Lviv, 79013, Ukraine
autor
  • Karpenko Physico-Mechanical Institute of the NAS of Ukraine, ul. Naukova 5, Lviv 79060, Ukraine
  • Lviv Polytechnic National University, ul. Bandera 12, Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, ul. Bandera 12, Lviv, 79013, Ukraine
Bibliografia
  • [1] U.P. Singh, R. Singh, Wear investigation of wheel and rail steels under conditions of sliding and rollingsliding contact with particular regard to microstructural parameters, Wear 170/1 (1993) 93-99, doi: 10.1016/0043-1648(93)90355-P.
  • [2] W. Zhong, J.J. Hu, P. Shen, C.Y. Wang, Q.Y. Lius, Experimental investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway and selection of rail material, Wear 271/9-10 (2011) 2485-2493, doi: 10.1016/j.wear.2010.12.053.
  • [3] J.H. Beynon, J.E. Garnham, K.J. Sawley, Rolling contact fatigue of three pearlitic rail steels, Wear 192 (1996) 94-111, doi: 10.1016/0043-1648(95)06776-0.
  • [4] Y. Miyashita, Y. Yoshimura, J. Xu, M. Horikoshi, Y. Mutoh, Subsurface crack propagation in rolling contact fatigue of sintered alloy, International Journal Series A Solid Mechanics and Material Engineering 46/3 (2003) 341-347.
  • [5] E. Bormetti, G. Donzella, A. Mazzu, Surface and subsurface cracks in rolling contact fatigue of hardened components, Tribology Transactions 45/3 (2002) 274-283.
  • [6] A. Mazzu, L. Solazzi, M. Lancini, C. Petrogalli, A. Ghidini, M. Faccoli, An experimental procedure for surface damage assessment in railway wheel and rail steels, Wear 342-343 (2015) 22-32.
  • [7] G. Donzella, A. Mazzu, C. Petrogalli, Experimental and numerical investigation on shear propagation of subsurface cracks under rolling contact fatigue, Procedia Engineering 109 (2015) 181-188, doi: 10.1016/j.proeng.2015.06.230.
  • [8] P. Clayton, X. Su, Surface initiated fatigue of pearlitic and bainitic steels under water lubricated rolling/ sliding contact, Wear 200/1-2 (1996) 63-73, doi: 10.1016/S0043-1648(96)07250-X.
  • [9] W.R. Tyfour, J.H. Beynon, A. Kapoor, Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact, Wear 197/1-2 (1996) 255-265.
  • [10] K. Cvetkovski, J. Ahlstrom, M. Norell, C. Persson. Analysis of wear debris in rolling contact fatigue cracks of pearlitic railway wheels, Wear 314/1-2 (2014) 51-56, doi: 10.1016/j.wear.2013.11.049.
  • [11] H. Matsunaga, H. Komata, J. Yamabe, Y. Fukushima, S. Matsuoka, Effect of size and depth of small defect on the rolling contact fatigue strength of bearing steel JIS-SUJ2, Procedia Materials Science 3 (2014) 1663- 1668, doi: 10.1016/j.mspro.2014.06.268.
  • [12] M. Guagliano, L. Vergani, Prediction of the propagation of an internal crack under rolling contact loads by a weight function approach, Key Engineering Materials 251-252 (2003) 473-484.
  • [13] S. Deng, L. Hua, X. Han, S. Huang, Investigation of rolling contact fatigue cracks in ball bearings, International Journal of Fracture 188/1 (2014) 71-78.
  • [14] Y. Liu, B. Stratman, S. Mahadevan, Fatigue crack initiation life prediction of railroad wheels, International Journal of Fatigue 28/7 (2006) 747-756.
  • [15] P.L. Ko, S.S. Iyer, H. Vaughan, M. Gadala, Finite element modelling of crack growth and wear particle formation in sliding contact, Wear 251/1-12 (2001) 1265-1278.
  • [16] V.T. Troshchenko, G.V. Tsybanev, A.O. Khotsyanovsky, Two-parameter model of fretting fatigue crack growth, Fatigue & Fracture of Engineering Materials & Structures 17/1 (1994) 15-23, doi: 10.1111/j.1460-2695.1994.tb00769.x.
  • [17] A. Mazzu, A numerical approach to subsurface crack propagation assessment in rolling contact, Fatigue & Fracture of Engineering Materials & Structures 36/6 (2013) 548-564.
  • [18] K. Aslantas, S. Tasgetiren, Edge spalling formation in a plate due to moving compressive load, Turkish Journal of Engineering & Environmental Sciences 27/5 (2003) 333-338.
  • [19] R. Lunden, Elastoplastic modelling of subsurface crack growth in rail/wheel contact problems, Fatigue & Fracture of Engineering Materials & Structures 30/10 (2007) 905-914.
  • [20] G. Donzella, M. Faccoli, A. Ghidini, A. Mazzu, R. Roberti, The competitive role of wear and RCF in a rail steel, Engineering Fracture Mechanics 72/2 (2005) 287-308.
  • [21] S. Bogdanski, M.W. Brown, Modelling the threedimensional behaviour of shallow rolling contact fatigue cracks in rails, Wear 253/1-2 (2002) 17-25, doi: 10.1016/S0043-1648(02)00078-9.
  • [22] O.P. Datsyshyn, V.V. Panasyuk, A.Y. Glazov, Modeling of fatigue contact damages formation in rolling bodies and assessment of their lifetime, Wear 271/1-2 (2011) 186-194, doi: 10.1016/j.wear.2010. 10.023.
  • [23] X. Xu, D. Cho, Y. Chang, J. Choi, Y. Kim, H. Jun, J. Seo, D. Kim, Evaluation of slant crack propagation under RCF in railway rail, Journal of Mechanical Science and Technology 25/5 (2011) 1215-1220.
  • [24] J. Seo, S. Kwon, H. Jun, D. Lee, Fatigue crack growth behavior of surface crack in rails, Procedia Engineering 2 (2010) 865-872.
  • [25] T.M. Lenkovs’kyi, Determination of the characteristics of cyclic crack resistance of steels under transverse shear (a survey), Materials Science 50/3 (2014) 340-349.
  • [26] Y.L. Ivanyts’kyi, Т.М. Lenkovs’kyi, І.А. Verhun, S.Т. Shtayura, Investigation of the kinetics of fatigue macrocracks under transverse shear, Materials Science 52/3 (2016) 349-356.
  • [27] G.V. Tsybanev, P.Y. Kravets, A.O. Khotsyanovskii, A method of testing for crack resistance under a cyclic shearing load, Strength of Materials 24/1 (1992) 97- 103, doi: 10.1007/BF00777234.
  • [28] H. Matsunaga, N. Shomura, S. Muramato, M. Endo, Shear mode threshold for a small fatigue crack in a bearing steel, Fatigue & Fracture of Engineering Materials & Structures 34/1 (2011) 72-82.
  • [29] V. Doquet, Q.H. Bui, G. Bertolino, E. Merhy, L. Alves, 3D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4V, International Journal of Fracture 165/1 (2010) 61-76.
  • [30] H. Nishizawa, T. Ogawa, A mode II fatigue crack growth characteristics and experimental evaluation of the crack driving force, Journal of the Society of Materials Science 54/12 (2005) 1295-1300.
  • [31] S. Okazaki, K. Wada, H. Matsunaga, M. Endo, The influence of static crack-opening stress on the threshold level for shear-mode fatigue crack growth in bearing steels, Engineering Fracture Mechanics 174 (2017) 127-138.
  • [32] State Standard GOST 1497-84 (1984) Metals. Methods of tension test, Moscow: Izd. Standartov, 36 p. (in Russian).
  • [33] Methodical guidelines RD 50-345-82 (1983) Methods for mechanical tests of metals, Determination of the characteristics of crack-growth resistance (fracture toughness) under cyclic loading, Moscow: Izd. Standartov, 95 p. (in Russian).
  • [34] Patent for a useful model no. 73715 (2012) Installation for the formation of a mode II fatigue crack in beam specimens, Kyiv: DP “Ukrpatent”, 4 p. (in Ukrainian).
  • [35] State Standard DSTU 8601:2015 (2016) Calculation and strength tests, The method for determining crack growth resistance characteristics under transverse shear of metals at room temperature, Kyiv: DP “UkrNDNC”, 27 p. (in Ukrainian).
  • [36] Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, Z.A. Duriagina, Influence of 65G steel microstructure on crack faces friction factor under mode II fatigue fracture, Archives of Materials Science and Engineering 82/2 (2016) 49-56.
  • [37] Y. Yamada, Materials for Springs, Springer Science & Business Media, 2007, 377 p., ISBN 978-3-540- 73812-1.
  • [38] O.P. Ostash, I.M. Andreiko, V.V. Kulyk, O.I. Babachenko, V.V. Vira, Influence of the mode of thermal treatment and load ratio on the cyclic crack-growth resistance of wheel steels, Materials Science 45/2 (2009) 211-219, doi.org/10.1007/s11003-009-9112-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb1648f2-e223-49c0-a95d-8dda23fdea87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.