PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processing of Palm Mill Oil Effluent Using Photocatalytic: A Literature Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extraction of palm oil fruit (E. guineensis) is achieved by a combination of methods such as pressing, sterilizing, digesting, peeling, grading, purifying, and vacuum drying the extracted oil. This process requires excessive use of water and produces a large amount of wastewater with a high concentration of pollutants, called palm oil mill efluent (POME). This waste water is a high-viscosity liquid with a brown color and a temperature of 80–90 °C. It has a very low pH value, between 4.2–4.5, has a high chemical and biochemical oxygen demand, and is extremely toxic. POME treatment has adopted a variety of methods and technologies, including coagulation-flocculation, anaerobic-aerobic treatment and membrane technology. Biological treatment is mainly used to treat POME, and the POME treated through biological treatment is called palm oil mill secondary effluent (POMSE). Unfortunately, the treated wastewater still contains high concentrations of organic matter. The color of the effluent is still dark brown. The remaining pollutants from this biological process are generally difficult to degrade biologically, thus requiring suitable processing methods for its removal, so that it can be discharged to the environment safely or even reused orrecycled. One of the challenging processing methods is photocatalytic process. This method is able to utilize abundant resources in the form of sunlight, and is also effective to degrade a wide variety of recalcitrant organic pollutants in the wastewater. This paper presents the current research and development of photocatalytic degradation process for processing of palm oil mill secndary effluent. The review and analysis are focused on synthesis of photocatalyst and the photoreactor design. Based on the results of the literature review and analysis, some recommendations are formulated for future research for their application in advanced POMSE management so that it can be reused for various purposes.
Rocznik
Strony
43--52
Opis fizyczny
Bibliogr. 62 poz., tab.
Twórcy
autor
  • Department of Agroindustrial Technology, Bogor Agricultural University (IPB) Bogor 16680, Indonesia
  • Department of Agroindustrial Technology, University of Lambung Mangkurat, Banjarbaru 70714 Indonesia
autor
  • Department of Agroindustrial Technology, Bogor Agricultural University (IPB) Bogor 16680, Indonesia
  • Department of Agroindustrial Technology, Bogor Agricultural University (IPB) Bogor 16680, Indonesia
  • Department of Agroindustrial Technology, Bogor Agricultural University (IPB) Bogor 16680, Indonesia
Bibliografia
  • 1. Adhikari S.R., Gupta A., Surin T.S., Kumar S., Chakraborty D., Sarkar G., Madras. 2016. Visible light assisted improved photocatalytic activity of combustion synthesized spongy-ZnO towards dye degradation and bacterial inactivation. RSC Adv, 6, 1–31.
  • 2. Ahmad A., Bahruddin, Said Z.A., David A. 2012. Uji kinerja bioreaktor hybrid anaerob dalam mengolah limbah cair pabrik kelapa sawit dengan beban kejut. Prosiding Seminar Nasional dan Kongres MAKSI 2012 Bogor.
  • 3. Akpan U.G., Hameed B.H. 2009. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. of Hazardous Materials, 170(2), 520–529.
  • 4. Alhaji M.H., Sanaullah K., Fong L.S., Khan A., Hipolito C.N., Abdullah M.O., Bhawani S.A., Jamil T. 2016. Photocatalytic Treatment technology for palm oil mill effluent (POME) A review. Process safety and environment protection. http://dx.doi.org/10.1016/j.psep.2016.05.020
  • 5. Ali A.M et al. 2014. Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst. J. of Photochemistry and Photobiology A: Chemistry, 275, 37–46.
  • 6. Amini M., Ashrafi M. 2016. Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles Nano. Chem. Res, 1, 79–86.
  • 7. Bandeira M., Marcelo G., Mariana R., Ely, Declan M.D., Janaina da S.C. 2020. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223.
  • 8. Rahayu A.S., Kharsiwulan D., Yuwono H., Trisnawati I., Mulyasari S., Rahardjo S., Hokermin S., Paramita V. 2015. Konversi POME menjadi biogas, prospek pengembangan di Indonesia. WinRock International.
  • 9. Chang Chih-Yi, Nae-Lih W. 2010. Process Analysis on Photocatalyzed Dye Decomposition for Water Treatment with TiO2-Coated Rotating Disk Reactor. Ind. Eng. Chem. Res., 49, 12173–12179. https://doi.org/10.1021/ie101330n
  • 10. Chang S.H. 2014. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 62. 174–181.
  • 11. Chokriwal A. et al. 2014. Biological Synthesis of Nanoparticles Using Bacteria and Their Applications. 4(6).
  • 12. Claes T., Anouk D.M.E.L., Tom V.G. 2019. Translucent packed bed structures for high throughput photocatalytic reactors. Chemical Eng. Journal, 361, 725–735. https://doi.org/10.1016/j.cej.2018.12.107.
  • 13. Doss N., Gaëlle C., Valérie K., Philippe A., Nicolas K. 2018. Photocatalytic Decontamination of Airborne T2 Bacteriophage Viruses in a Small-Size TiO2/β-SiC Alveolar Foam LED Reactor. J. of Water, air & soil pollution, 229, 29. https://doi.org/10.1007/s11270–017–3676-y
  • 14. Fadzil N.A.M., Zulkarnain Z., Abdul H.A. 2013. COD Removal for Palm Oil Mill Secondary Effluent by Using UV/Ferrioxalate/TiO2/O3 system. Int J of Emerging Technology and Advanced Engineering, 3(7).
  • 15. Fajaroh F. 2018. Sintesis Nanopartikel dengan Prinsip Kimia Hijau. Prosiding Seminar Nasional Kimia dan Pembelajarannya (SNKP), 24–32.
  • 16. Fathinia M., Khataee A.R. 2013. Residence time distribution analysis and optimization of photocatalysis of phenazopyridine using immobilized TiO2 nanoparticles in arectangular photoreactor. J. of Industrial and Engineering Chemistry, 19(5), 22, 1525–1534.
  • 17. Ghazali S.S., Jusoh R., Shariffuddin J.H. 2018. Parameter affecting photocatalytic degradation of POME using LaCa as photocatalyst. Materials Today: proceedings, 19, 1173–1182.
  • 18. Ghosh P.R., Derek F., Shashi B.S., Gerrard E.J.P. 2017. Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste Material. 10, 852 doi:10.3390/ma10080852
  • 19. Herrmann J.M. 2005. Heterogeneous photocatalytic: state of the art and present applications In honor of Pr. RL Burwell Jr. (1912–2003). Former Head of Ipatieff Laboratories Northwestern University Evanston (Ill) Topics in Catalysis, 34, 49–65.
  • 20. Ibhadon A.O., Fitzpatrick P. 2013. Heterogeneous photocatalytic: recent advances and applications. Catalysts, 3(1), 189–218.
  • 21. Jamali A., Richard V., Peter H., Tom V.G. 2013. A batch LED reactor for the photocatalytic degradation of phenol. Chemical Engineering and Processing: Process Intensification, 71, 43–50. http://dx.doi.org/10.1016/j.cep,201303.010
  • 22. Jo W., Rajesh J.T. 2016. Facile photocatalytic reactor development using nano-TiO2 immobilized mosquito net and energy efficient UVLED for industrial dyes effluent treatment. J. of Environmental Chemical Engineering, 4, 319–327. https://doi.org/10.1016/j.jece.2015.11.024
  • 23. Kanmani S., Sundar K.P. 2019. Progression of Photocatalytic reactors and it’s comparison: A Review Chemical Engineering Research and Design. doi: https://doi.org/10.1016/j.cherd.2019.11.035
  • 24. Kee M.W., Lam S.M., Sin J.C., Zeng H., Mohamed A.R. 2019. Explicating charge transfer dynamics in anodic TiO2/ZnO/Zn photocatalytic fuel cell for ameliorated palm oil mill effluent treatment and synchronized energy generation. J. of Photochemistry and amp; Photobiology, A: Chemistry. doi: https://doi.org/10.1016/j.jphotochem.2019.112353
  • 25. Khademalrasool M., Mansoor F., Mohammad D.T. 2016. The improvement of photocatalytic processes: Design of a photoreactor using high-power LEDs. J. of Science: Advanced Materials and Devices, 1, 382–387. http://dx.doi.org/10.1016/j.jsamd.2016.06.012
  • 26. Khan M.M., Adil S.F., Al-Mayouf A. 2015. Metal oxides as photocatalysts. J. of Saudi Chemical Society. http://dx.doi.org/10.1016/j.jscs.2015.04.003
  • 27. Kumari P., Bahadur N., Dumee L.F. 2020. Photocatalytic membrane reactor for the remediation of persistent organic pollutant: A review Separation and Purification technology, 230, 115878.
  • 28. Lazar M.A., Varghese S., Nair S.S. 2012. Photocatalytic Water Treatment 1 by Titanium Dioxide. Recent Updates Catalysts, 2, 572–601.
  • 29. Lestari L. 2017. Degradasi senyawa organik pada palm oil mill secondary effluent menggunakan fotokatalis TiO2. J. Citra Widya Edukasi IX, (2).
  • 30. Li D. et al. 2014. A novel double-cylindrical-shell photoreacto+r immobilized with monolayer TiO2-coated silica gel beads for photocatalytic degradation of Rhodamine B and Methyl Orange in aqueous solution. Separation and Purification Technology, 123, 130–138.
  • 31. Meunier S.M., Joanne G., Zdravko D., Zisheng Z. 2010. Design and Characterization of a Novel Rotating Corrugated Drum Reactor for Wastewater Treatment. Int. J. of Photoenergy, 6, 10.1155/2010/146743.
  • 32. Mirzaei M., Morteza J., Bahram D., Mitra D. 2017. Evaluation and modeling of a spinning disc photoreactor for degradation of phenol: impact of geometry modification. J. of Photochemistry and photobiology A: Chemistry, 346, 206–214. http://dx.doi.org/doi:10.1016/j.jphotochem.2017.05.043
  • 33. MuthuvinothiniA., Stella S. 2018. Green synthesis of Metal Oxide nanoparticles and their catalytic activity for the reduction of aldehydes. Process Biochemistry. https://doi.org/10.1016/j.procbio.2018.12.001
  • 34. Natarajan K., Thillai S.N., Bajaj H.C., Rajesh J.T. 2011. Photocatalytic reactor based on UV LED/TiO2 coated quartz tube for degradation of dyes. Chemical Engineering Journal, 178, 40–49 10.1016/j.cej.2011.10.007
  • 35. Nickels P., Hang Z., Sulaiman N.B., Abdullah Y.O., Tarek T.A., Ahmed A.A., El-Sayed H.E., Abdulrahman O.A., Stephen A.L. 2012. Laboratory Scale Water Circuit Including a Photocatalytic Reactor and a Portable In-Stream Sensor To Monitor Pollutant Degradation. Industrial & Engineering Chemistry Research, 51, 3301–3308 https://doi.org/10.1021/ie202366m
  • 36. Ng K.H. et al. 2015. Photocatalytic degradation of Recalcitrant POME Waste by Using Silver Doped Titania. Photokinetics and Scavenging Studies Chemical Engineering Journal.
  • 37. Ng K.H., Yuan L.S., Cheng C.K., Chen K., Fang C. 2019. TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. J. of Cleaner production, 233, 209–225.
  • 38. Ong C.B., Mohammad W., Rohani R., Ba-Abbad M.M., Hairom N.H.H. 2016. Solar photocatalytic degradation of hazardous Congo red using low temperature synthesis of zinc oxide nanoparticles. Process Safety and Environment Protection. http://dx.doi.org/10.1016/j.psep.2016.04.006
  • 39. Passalía C., Orlando M.A., Rodolfo J.B. 2013. Optimal Design of a Corrugated-Wall Photocatalytic Reactor Using Efficiencies in Series and Computational Fluid Dynamics (CFD) Modeling. Industrial & Engineering Chemistry Research, 52, 6916–6922. https://doi.org/10.1021/ie302838m
  • 40. Qi N. et al. 2011. CFD modelling of hydrodynamics and degradation kinetics in an annular slurry photocatalytic reactor for wastewater treatment. Chemical Engineering Journal, 172(1), 84–95.
  • 41. Rekhaa R., Mani D., Marimuthu G., Naiyf S.A., Shine K., Jamal M.K., Mohammed N.A., Roman P., Baskaralingam V. 2019. Synthesis and characterization of crustin capped titanium ioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities. J. of Photochemistry & Photobiology B: Biology, 199, 111620.
  • 42. Sacco O., Mariantonietta M., Vincenzo V., Giovanni L., Marco G., Giusy L., Maurizio C. 2018. Crystal violet and toxicity removal by adsorption and simultaneous photocatalytic in a continuous flow micro-reactor. Science of the Total Environment, 644, 430–438.
  • 43. Salsabila F. 2016. Pengolahan air dan limbah dengan reaktor membran fotokatalitik. https://www.researchgate.net/publication/303303470
  • 44. Santiago D.E. et al. 2015. Photocatalytic treatment of water containing imazalil using an immobilized TiO2 photoreactor. Applied Catalysis A: General, 498, 1–9. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0926860X15001799
  • 45. Sarono, Suparno O., Suprihatin, Hasanudin U. 2016. The performance of biogas production from POME at different temperature. Int. J. of technology, 8, 1413–1421.
  • 46. Shah M., Derek F., Shashi S., Suraj K.T., Gérrard E.J.P. 2015. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials, 8, 7278–7308. doi:10.3390/ma8115377
  • 47. Sidik D.A.B., Nur H.H.H., Abdul W.M. 2019. Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Safety and Environment Protection, 130, 265–274.
  • 48. Subramaniam M.N., Goh P.S., Lau W.J., Ng B.C., Ismail A.F. 2017. AT-POME colour removal through photocatalytic submerged filtration using antifouling PVDF-TNT nanocomposite membrane. Separation and Purification Technology. doi: https://doi.org/10.1016/j.seppur.2017.09.042
  • 49. Sugiyana D., Suprihanto N. 2015. Studi mekanisme degradasi fotokatalitik zat warna Azo acid red 4 menggunakan katalis mikropartikel TiO2. Arena Tekstil, 30(2).
  • 50. Tabassum S., Zhang Y., Zhang Z. 2015. An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge – A pilot study. Journal of Cleaner Production, 95, 148–155.
  • 51. Tan Y.H. et al. 2014. Treatment of Aerobic Treated Palm Oil Mill Effluent (AT-POME) by using TiO2 Photocatalytic Process. J. Teknologi, 70(2).
  • 52. Thota S., Tirokkovalluri S.V., Boojja S. 2014. Visible light induced photocatalytic degradation of methyl red codoped with titania. J. of Catalyst. http://dx.doi.org/10.1155/2014/962419
  • 53. Vaiano V., Sacco O., Pisano D., Sannino D., Ciambelli P. 2015. From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chemical Engineering Science, 137, 152–160. http://dx.doi.org/10.1016/j.ces.2015.06.023
  • 54. Vela N. et al. 2014. Photocatalytic mitigation of triazinone herbicide residues using titanium 3 dioxide in slurry photoreactor. Catalysis Today.
  • 55. Vijayaraghavan K., Ahmad D., Aziz M.E.B.A. 2007. Aerobic treatment of palm oil mill effluent. Journal of environmental management, 82(1), 24–31.
  • 56. Visan A., Damon R., Wojciech O., Rob G.H.L. 2014. Modeling intrinsic kinetics in immobilized photocatalytic. Microreactors Applied Catalysis B: Environmental, 150–151, 93–100.
  • 57. Visan A.J., Ruud van O., Michiel T.K., Rob G.H.L. 2019. Photocatalytic Reactor Design: Guidelines for Kinetic Investigation. Ind. Eng. Chem. Res, 58, 5349−5357.
  • 58. Wang J. et al. 2015. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor. BioMed Research International.
  • 59. Xing Y.X., Li L., Zhang Q., Xu Z., Che W., Li Y., Bai K.L. 2012. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog. Org. Coat, 73, 219–224.
  • 60. Yurdakal S., Vittorio L., Giovanni P., Vincenzo A., Huseyin B., Leonardo P. 2010. Kinetics of 4-Methoxybenzyl Alcohol Oxidation in Aqueous Solution in a Fixed Bed Photocatalytic Reactor. Ind. Eng. Chem. Res., 49, 6699–6708. https://doi.org/10.1021/ie9008056
  • 61. Zainuri N.Z., Nur H.H.H., Dilaelyanam A.B.S., Amira L.D., Nurasyikin M., Norhaniza Y., Abdul W.M. 2018. Palm oil mill secondary effluent (POMSE) treatment via photocatalytic process in presence of ZnO-PEG nanoparticles. J. of Water Process Engineering, 26, 10–16.
  • 62. Zhang Z., Hongjun W., Yuan Y., Yanju F., Litong J. 2012. Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye. Chemical Engineering Journal, 184. 9–15. 10.1016/j.cej.2011.02.057
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb11f7bc-9bb1-47f2-ad43-b215307ddc6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.