PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing Safety Measures for Munitions under Different Logistic Configurations Incorporating Large Standard Shaped Charges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern warfare, rocket-propelled grenades (RPGs) pose significant threats due to their widespread availability and effectiveness. However, research on safeguarding munitions transported in containers using palletized load systems against RPG attacks is limited. This study assesses the safety of munitions in both unprotected and protected container configurations using steel and ceramic addon protections, with 56mm shaped charge munitions as the target. Experimental setups with 89 mm shaped charges comprised of COMPB explosive and copper liner were developed as RPG surrogates, alongside corresponding simulations using ANSYS AUTODYN. Aluminum buffer plates (75 mm thick) were added to meet RPG7 requirements. Safety evaluations for 56 mm JH-2 shaped charge munitions were conducted with standard and improved armor thicknesses. Results show significant damage from detonation when armor thickness was below 50 mm, but no detonation in one configuration with 50 mm steel armor, confirmed by simulations. This research highlights vulnerabilities and potential mitigations for munitions transported via palletized load systems facing RPG threats.
Rocznik
Strony
361--383
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr.
Twórcy
  • Nanjing University of Science and Technology, Jiangsu 210094, China
  • Nanjing University of Science and Technology, Jiangsu 210094, China
autor
  • Nanjing University of Science and Technology, Jiangsu 210094, China
  • Nanjing University of Science and Technology, Jiangsu 210094, China
autor
  • Nanjing University of Science and Technology, Jiangsu 210094, China
Bibliografia
  • [1] Nussbaumer, P. Lethality-Model for HD 1.2/1.4 Ammunition Debris Throw Due to An Explosion on a Vehicle. Proc. 34th DoD Explosives Safety Semin., Portland, US-OR, 2010.
  • [2] Lawrence, W. Test Data on the Storage of Mixed Munitions in Conex Containers. Proc. 24th DoD Explosive Safety Semin., St. Louis, US-MO, 1990.
  • [3] DiMoia, J.P. Reconfiguring Transport Infrastructure in Post-War Asia: Mapping South Korean Container Ports, 1952-1978. Hist. Technol. 2020, 36(3-4): 382-399; https://doi.org/10.1080/07341512.2020.1862990.
  • [4] Finnerty, A.E.; Watson, J.L.; Peregino II, P.J. A Safer Method of Storing Ammunition in a Conex Container. Proc. 25th Explosives Safety Semin., Anaheim, US-CA, 1992, Vol. 1, pp. 163-181.
  • [5] Hill, D.B. Propagation and Fire Tests Conducted on a Secondary Steel Container Designed for Movement of Chemical Agent Artillery Projectiles. Proc. 24th DoD Explosive Safety Semin., St. Louis, US-MO, 1990.
  • [6] Steyerer, M.; Stange, O. DEU Ammunition Storage in Earth Covered ISO-Containers. Proc. 34th DDESB Semin., US-OR, 2010.
  • [7] Madsen, N.K.; Madsen, S.H.; Thomsen, A.J. Concept of Field Storage of Ammunition and Explosives in 20’Standard Container. Proc. 26th DoD Explosive Safety Semin., Miami, US-FL, 1994.
  • [8] Tobin, T.M.; Rossi, R.A. The U.S. Army Safeload Explosives Safety Program. Proc. 25th Explosives Safety Semin., Anaheim, US-CA, 1992, Vol. 1, pp. 133-149.
  • [9] Coghe, F. Efficiency of Different Cage Armour Systems. Appl. Sci. 2022, 12(10) paper 5064; https://doi.org/10.3390/app12105064.
  • [10] Niezgoda, T.; Panowicz, R.; Sybilski, K.; Barnat, W. Numerical Analysis of Missile Impact being Shot by Rocket Propelled Grenades with Rod Armour. WIT Trans. Modell. Simul. 2011, 51: 625-633; https://doi.org/10.2495/CMEM11055.
  • [11] Shuker, S.T. Rocket-Propelled Grenade Maxillofacial Injuries and Management. J. Oral Maxillofac. Surg. 2006, 64(3): 503-510; https://doi.org/10.1016/j.joms.2005.11.033.
  • [12] Sehirlioglu, A.; Komurcu, M.; Ozturk, C.; Oguz, E.; Atesalp, A.S.; Altinmakas, M. An Unexploded Rocket-Propelled Grenade in the Thigh. Eur. J. Orthop. Surg. Traumatol. 2008, 18(3): 233-236; https://doi.org/10.1007/s00590-007-0292-3.
  • [13] Babu, V.; Vunnam, M. Comparative Analysis of Arbitrary Lagrange in Eulerian (ALE) and Adaptive Smooth Particles Hydrodynamics (SPH) Simulation of Rocket Propelled Grenade (RPG) on Armors. Proc. 31st Int. Symp. Ballistics, Hyderabad, India, 2019.
  • [14] Fayed, A.I.H.; Abo El Amaim, Y.A.; Elgohary, D.H. Investigating the Behavior of Manufactured Rocket Propelled Grenade (RPG) Armour Net Screens from Different Types of High Performance Fibers. Int. J. Sci. Res. 2019, 8(5): 2088-2091.
  • [15] Żochowski, P.; Podgórzak, P. Numerical Analysis of Effectiveness for Vehicle Net Systems Protecting Against Shaped Charge Projectiles. Issues Armament Technol. 2016, 139(3): 23-37; https://doi.org/10.5604/01.3001.0010.0533.
  • [16] Żochowski, P.; Warchoł, R.; Miszczak, M.; Nita, M.; Pankowski, Z.; Bajkowski, M. Experimental and Numerical Study on the PG-7VM Warhead Performance against High-Hardness Armor Steel. Materials 2021, 14(11) paper 3020; https://doi.org/10.3390/ma14113020.
  • [17] Yew, Y.Z. How Can Rocket Launchers Replace Assault Rifles as the Standard Infantry Weapon? Report FN 401, St. Jospeh’s Institution, 2015.
  • [18] Law, N.G. Integrated Helicopter Survivability. Doctoral Thesis, Cranfield University, UK, 2011.
  • [19] Anderson, D.; Thomson, D. Analyzing Helicopter Evasive Maneuver Effectiveness Against Rocket-Propelled Grenades. J. Guid. Control. Dyn. 2014, 37(1): 277-289; http://dx.doi.org/10.2514/1.59318.
  • [20] Wallace, M. BeHinD THe nUMBerS.
  • [21] Arnold, W.; Rottenkolber, E. High Explosive Initiation Behavior by Shaped Charge Jet Impacts. Procedia Eng. 2013, 58: 184-193; https://doi.org/10.1016/j.proeng.2013.05.022.
  • [22] Baker, E.L.; Pham, J.; Madsen, T.; Poulos, W.; Fuchs, B.E. Shaped Charge Jet Characterization and Initiation Test Configuration for IM Threat Testing. Procedia Eng. 2013, 58: 58-67; https://doi.org/10.1016/j.proeng.2013.05.009.
  • [23] Hobbs, M.L.; Kaneshige, M.J.; Anderson, M.U. Cookoff of a Melt-Castable Explosive (Comp-B). Proc. 27th JANNAF Propulsion Systems Hazards Joint Subcommittee Meeting, Monterrey, CA, 2012.
  • [24] Hong, X.W.; Li, W.B.; Cheng, W.; Li, W.B.; Xu, H.Y. Numerical Simulation of the Blast Wave of a Multilayer Composite Charge. Def. Technol. 2020, 16(1): 96-106; https://doi.org/10.1016/j.dt.2019.04.007.
  • [25] Zhang, X.F.; Huang, Z.X.; Qiao, L. Detonation Wave Propagation in Double‐layer Cylindrical High Explosive Charges. Propellants Explos., Pyrotech. 2011, 36(3): 210-218; https://doi.org/10.1002/prep.201000004.
  • [26] Elshenawy, T.; Li, Q.M. Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator. Int. J. Impact Eng. 2013, 54: 130-137; https://doi.org/10.1016/j.ijimpeng.2012.10.010.
  • [27] AUTODYN Theory Manual, Revision 4.0. Century Dynamics Inc., 1998.
  • [28] Li, X.D.; Yang, Y.S.; Lv, S.T. A Numerical Study on the Disturbance of Explosive Reactive Armors to Jet Penetration. Def. Technol. 2014, 10(1): 66-75; https://doi.org/10.1016/j.dt.2014.01.006.
  • [29] Downes, D.; Bouamoul, A.; Ensan, M.N. Numerical Simulation of the Shaped Charge. Project DRDC-RDDC-2014-P38, Canada, 2014.
  • [30] Lee, E.L.; Hornig, H.C.; Kury, J.W. Adiabatic Expansion of High Explosive Detonation Products. University of California, Lawrence Radiation Laboratory, Report UCRL-50422, Livermore, US-CA, 1968.
  • [31] Lee, E.L.; Tarver, C.M. Phenomenological Model of Shock Initiation in Heterogeneous Explosives. Phys. Fluids 1980, 23(12): 2362-2372; https://doi.org/10.1063/1.862940.
  • [32] Souers, P.C.; Garza, R.; Vitello, P. Ignition and Growth and JWL++ Detonation Models in Coarse Zones. Propellants Explos., Pyrotech. 2002, 27(2): 62-71; https://doi.org/10.1002/1521-4087(200204)27:2<62::AID-PREP62>3.0.CO;2-5.
  • [33] Xu, W.; Wang, C.; Chen, D. Formation of a Bore-Center Annular Shaped Charge and Its Penetration into Steel Targets. Int. J. Impact Eng. 2019, 127: 122-134; https://doi.org/10.1016/j.ijimpeng.2019.01.008.
  • [34] Awan, M.S.; Huang, Z.; Zu, X.; Xiao, Q.; Ma, B. Application of Lee-Tarver Model for Energetic Materials Safety Assessment Utilized in Aerospace Applications. Aerosp. 2024, 11(7) paper 513; https://doi.org/10.3390/aerospace11070513.
  • [35] Awan, M.S.; Huang, Z.X.; Zu, X.; Xiao, Q.Q.; Bin, M. Safety Assessment of Insensitive and Conventional Energetic Materials using 50 mm Small Standard Shaped Charges: Numerical and Experimental Insights. Lat. Am. J. Solids Struct. 2024, 21(3) paper e540; https://doi.org/10.1590/1679-78258054.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb10988d-1550-4a6e-ba99-e5f9984644e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.