PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid Modeling Methods of Cranial Implants

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with a three hybrid modeling methods of virtual skull implants, developed by the author. 3D models of cranial implants are nowadays necessary for the creation of real implants using modern manufacturing technologies. These methods combine simultaneous usage of three modeling systems (which causes their hybridity): computer tomography system (as a reverse engineering system), surface modeling system and haptic modeling system, and their characteristic modeling methods and techniques. Whereby to commonly used three different modeling systems we have obtained a synergic effect of the implant shape model quality increasing. The result of using the developed hybrid methods are models of exemplary cranial implants. The common feature of these methods is that the target virtual model of the cranial implant is always well-suited the coastline of bone hole in the skull. The time of developed of the virtual model of any cranial implant using proposed methods is very shorter compared to use only one of the standard (not medically specialized) computer-aided systems. Similarly, the amount of modeling work is also much smaller than using only one standard 3D system. The article describes hybrid modeling methods developed by the author only.
Twórcy
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology, Konarskiego 18a., 44-100 Gliwice, Poland
Bibliografia
  • 1. Bonda D.J., Manjila S., Selman W.R., Dean D., Review, The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions, Neurosurgery, 2015, 77, 5, 814–824.
  • 2. Bordegoni M., Cugini U., Haptic modeling in the conceptual phases of product design, VIRTUAL REALITY, 2005, 2–3(9):192–202.
  • 3. Chen J.-J., Liu W., Li M.-Z., Wang C.-T., Digital manufacture of titanium prosthesis for cranioplasty, The International Journal of Advanced Manufacturing Technology, 2006, 27, 1148–1152.
  • 4. Chen X., Xu L., Li X., Egger J., Computer-aided implant design for the restoration of cranial defects, Scientific Reports, 2017, 7, 1–10.
  • 5. Chrzan R., Urbanik A., Karbowski K, Moskała M., Cranioplasty prosthesis manufacturing based on reverse engineering technology, Med. Sci. Monit., 2012, 18, 1, MT1–6.
  • 6. Cierniak M., Computed tomography. Construction of CT. Reconstruction algorithms, Academic Publishing House EXIT, 2006.
  • 7. Dassault Systèmes, 2017, https://www.3ds.com/ products-services/catia. Accessed 01 January 2018
  • 8. DICOM, 2017, http://medical.nema.org. Accessed 30 December 2017
  • 9. Esses S.J., Berman P., Bloom A. I., Sosna J., Clinical Applications of Physical 3D Models Derived From MDCT Data and Created by Rapid Prototyping, American Journal of Roentgenology, 2011, 196, 683–688.
  • 10. Eufinger H., Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data, Journal of Cranio-maxillofacial Surgery, 1995, 23, 175–181.
  • 11. Geomagic®Claytools®, 2016, http://geomagic. com/en/products/claytools/overview. Accessed 01 September 2017
  • 12. Hieu L.C., Bohez E.,Vander Sloten J., Phien H.N., Vatcharaporn E., Binh P.H., An P.V., Oris P., Design for medical rapid prototyping of cranioplasty implants, Rapid Prototyping Journal, 2003, 9,3, 175–186.
  • 13. Karbowski K., Urbanik A., Wyleżoł M., Image analysis and virtual modeling in designing of skull prosthesis, Mechanik, 2010, 7, 620–622.
  • 14. Kiciak P., Boundary of curves and surfaces modeling, WNT, 2000.
  • 15. Larysz D., Wolański W., Kawlewska E., Mandera M., Gzik M., Biomechanical aspects of preoperative planning of skull correction in children with craniosynostosis, Acta Bioeng. Biomech., 2012, 14, 2, 19–26.
  • 16. Materialise, 2018, http://biomedical.materialise. com/mimics. Accessed 01 January 2018
  • 17. Moiduddina K., Darwish S., Al-Ahmari A., EiWatidy S., Ashfaq M., Ameen W., Structural and mechanical characterization of custom design cranial implant created using additive manufacturing, Electronic Journal of Biotechnology, 2017, 29, 22–31.
  • 18. Osirix, 2018, http://www.osirix-viewer.com. Accessed 01 January 2018
  • 19. Parthasarathy J., 3D modeling, custom implants and its future perspectives in craniofacial surgery, Annals of Maxillofacial Surgery, 2014, 4, 9–18.
  • 20. Piegl L., Tiller W., The NURBS book, New York, Springer-Verlag, 1997.
  • 21. Singare S., Lian Q., Ping Wang W., Wang J., Liu Y., Li D., Lu B., Rapid prototyping assisted surgery planning and custom implant design, Rapid Prototyping Journal, 2009, 15, 1, 19–23.
  • 22. Wełyczko A., CATIA v5. The art of surface modeling, Helion, 2009.
  • 23. Wyleżoł M., Use of haptic methods in engineering modeling and analysis – examples, Mechanik, 2009, 11, 948.
  • 24. Wyleżoł M., Modeling of cranial prosthesis, Mechanik, 2012, 2, 980.
  • 25. Wyleżoł M., Methodology of modeling for reverse engineering needs, Silesian University of Technology Publisher, 2013.
  • 26. Wyleżoł M., Muzalewska M., Szczodry B., Computer aided and 3D printing in pre-operative planning of orbital reconstruction surgery. Advanced Technologies in Mechanics, 2015, 3, 20–30.
  • 27. Wyleżoł M., Methods of skull implants modeling with use of CAx and haptic systems, Medical Imaging, 2017, 536–558.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb0ebe00-64dd-40cc-9ade-d509cfc524a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.