PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material and Energy Flow Analysis (MEFA) of the unconventional method of electricity production based on underground coal gasification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose In this paper, the application of Umberto NXT LCA software to devise a Material and Energy Flow Analyses (MEFA) for the technology of producing electricity from gas extracted in the process of shaftless underground coal gasification is presented. The Material Flow Analyses of underground coal gasification includes a range of technology, through obtaining process gas and its purification, to electricity production, and, additionally, the capture of carbon dioxide. Methods To evaluate electricity production based on Underground Coal Gasification, Material and Energy Flow Analyses (MEFA) was used. Modeling material and energy flow helps a high level of efficiency or technology of a given process to be reached, through the effective use of resources and energy, or waste management. The applied software for modeling material flow enables, not only, the simulation of industrial processes, but also the simulation of any process with a material or energy flow, e.g. in agriculture. Results MEFA enabled the visualization of material and energy flow between individual unit processes of the technology of electricity production from UCG gas. An analysis of material and energy flow networks presented in the form of Sankey diagrams enabled the identification of unit processes with the biggest consumption of raw materials and energy, and the greatest amount of emissions to the environment. Practical implications Thanks to applying material and energy flow networks with Umberto software, it is possible to visualize the flow of materials and energy in an analyzed system (process/technology). The visualization can be presented in the form of an inventory list of input and output data, or in the form of a Sankey diagram. In the article, a Sankey diagram has been utilized. MEFA is first stage of the plan to conduct analyses using Umberto software. The analyses performed so far will be used in the following stages of the research to assess the environmental impact using the LCA (Life Cycle Assessment) technique, to analyze costs using the LCC (Life Cycle Cost) technique, and to analyze eco-efficiency. It is important to highlight the fact that this is the first attempt of material and energy flow analysis of electricity production from UCG gas. Originality/ value This is the first approach which contains a whole chain of electricity production from Underground Coal Gasification, including stages of gas cleaning, electricity production and the additional capture of carbon dioxide.
Rocznik
Strony
41--47
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Central Mining Institute (Katowice, Poland)
autor
  • Department of Material Engineering, Central Mining Institute (Katowice, Poland), tel. + 48 32 259 22 10, fax: +48 32 259 24 84
  • Department of Energy Saving and Air Protection, Central Mining Institute (Katowice, Poland)
  • Department of Energy Saving and Air Protection, Central Mining Institute (Katowice, Poland)
Bibliografia
  • 1. Burchart-Korol, D., Krawczyk, P., Śliwińska, A., & Czaplicka-Kolarz, K. (2013a). Ocena ekoefektywności systemu produkcyjnego technologii naziemnego zgazowania węgla [Eco-efficiency assessment of the production system of coal gasification technology]. Przemysł Chemiczny, 92(3), 1000–1006.
  • 2. Burchart-Korol, D., Korol, J., Czaplicka-Kolarz, K., & Krawczyk, P. (2013). Eco-efficiency modeling based on life cycle assessment. Paper presented at the 6th International Conference on Life Cycle Management in Gothenburg, 25–28 August, 2013.
  • 3. Buhner, M. (2012, November 21). 31 Innovations for Maximum Resource Efficiency in Manufacturing. Retrieved February 3, 2014, from www.knowtheflow.com/2012/31-innovations-for-maximum-resource-efficiency-in-the-manufacturing-industry/#more.
  • 4. Buhner, M. (2013, May 29). 5 Steps towards Maximum Resource Efficiency: Material Flow Modeling Made Easy. Retrieved February 3, 2014, from www.knowtheflow.com/2013/5-steps-towards-maximum-resource-efficiency-material-flow-modeling-made-easy/#more.
  • 5. Czaplicka-Kolarz, K., Burchart-Korol, D., & Krawczyk, P. (2013). Metodyka oceny podziemnego zgazowania węgla w aspekcie zrównoważonego rozwoju Polski [Assessment methods of the underground coal gasification process in terms of the sustainable development in Poland]. Przegląd Górniczy, 69(2), 194–199.
  • 6. Czaplicka-Kolarz, K., Burchart-Korol, D., Śliwińska, A., Krawczyk, P., & Ludwik-Pardała, M. (2011). Ekoefektywność technologii podziemnego zgazowania węgla – metodyka i dotychczasowe doświadczenia [Eco-efficiency of underground coal gasification technologies – methodology and hitherto experiences]. Przegląd Górniczy, 67(10), 33–40.
  • 7. Friedmann, S.J. (2011). Underground Coal Gasification. Transformational Clean Fossil Technology (Nov. 1, 2011, LLNL-PRES-449296). Houston, TX: World Energy Council.
  • 8. Kapusta, K., & Stańczyk, K. (2009). Uwarunkowania i ograniczenia rozwoju procesu podziemnego zgazowania węgla w Polsce [Conditions and limits of development of the underground coal gasification process in Poland]. Przemysł Chemiczny, 88(4), 331–338.
  • 9. Kapusta, K., & Stańczyk, K. (2011). Pollution of water during underground coal gasification of hard coal and lignite. Fuel, 90, 1927–1934.
  • 10. Kapusta, K., Stańczyk, K., Wiatowski, M., & Chećko, J. (2013). Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland. Fuel, 113, 196–208.
  • 11. Ludwik-Pardała, M., & Niemotko, K. (2012). Przegląd metod podziemnego zgazowania węgla [Review of underground coal gasification methods]. Przegląd Górniczy, 68(3), 25–31.
  • 12. Ludwik-Pardała, M., & Niemotko, K. (2013). Przegląd metod podziemnego zgazowania węgla na podstawie wybranych przeprowadzonych prób na świecie [Review of underground coal gasification methods on the basis of tests carried out worldwide]. Przegląd Górniczy, 69(2), 8–16.
  • 13. NETL. (2011). Cost and Performance Baseline for Fossil Energy Plants – Low Rank, Vol. 3a. IGCC Cases, May 2011.
  • 14. Smoliński, A., Stańczyk, K., Kapusta, K., & Howaniec, N. (2012). Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data. Water, Air and Soil Pollution, 223(9), 5745–5758.
  • 15. Smoliński, A., Stańczyk, K., Kapusta, K., & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in-situ underground coal gasification process. Water Science and Technology, 67(3), 644–650.
  • 16. Stańczyk K. (2008). Czyste technologie użytkowania węgla [Clean technology of using coal]. Katowice: Główny Instytut Górnictwa.
  • 17. Stańczyk, K., Smoliński, A., Kapusta, K., Wiatowski, M., Świądrowski, J., Kotyrba, A., & Rogut, J. (2010). Dynamic experimental simulation of hydrogen oriented underground gasification of lignite. Fuel, 89, 3307–3314.
  • 18. Stańczyk, K., Howaniec, N., Smoliński, A., Swiądrowski, J., Kapusta, K., Wiatowski, M., Grabowski, J., & Rogut, J. (2011). Gasification of lignite and hard coal with air and oxygen-enriched air in a pilot scale ex-situ reactor for underground gasification. Fuel, 90, 1953–1962.
  • 19. Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91, 40–50.
  • 20. Wiatowski, M., Stańczyk, K., Świądrowski, J., Kapusta, K., Cybulski, K., Krause, E., Grabowski, J., Rogut, J., Howaniec, N., & Smoliński, A. (2012). Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine "Barbara". Fuel, 99, 170–179.
  • 21. Wohlgemuth, V., Page, B., & Kreutzer, W. (2006). Combining discrete event simulation and material flow analysis in a component-based approach to industrial environmental protection. Environmental Modelling & Software, 21(11), 1607–1617.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb057dd2-2139-47dc-ae20-a8c8b1629220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.