PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Study of the Variations in the Vertical and Horizontal Distribution of Heavy Sand Minerals in the Hilla River Sediments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted to investigate the effect of the Hilla River sediments on the heterogeneity of the distribution of heavy sand minerals for the fine and very fine sand classes as well as for the surface and subsurface layers. The results showed that the heavy sand minerals that were determined according to the specific gravity of each mineral and the specific gravity of the particles of minerals identified in the soils under study ranged between (2.5–4.5) and were divided into four groups in terms of the specific gravity. The first group included each of the minerals (Mica and Chlorite) of low specific gravity, while the second group contains (Pyroxene, Amphibole, Epidote Group). The third group includes minerals (Tourmaline and Garnet, Staurolite and Kyanite) and the two groups are classified as minerals of medium-specific gravity; in turn, the fourth group contains minerals of high specific gravity, namely (Zircon, Rutile and Opaques). As a result, the most important factors affecting the sedimentation, sorting and sedimentation processes are the conveyor’s speed, load capacity, the size of the separation particles and their specific gravity. The complete mismatch of the horizontal distribution of the minerals of one group is due to the varying ranges of the specific gravity of the minerals within the general range of specific gravity.
Słowa kluczowe
Rocznik
Strony
318--330
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • College of Agriculture Engineering Science, Baghdad University, Baghdad, Iraq
  • College of Agriculture, Al-Qasim Green University, Babil, Iraq
  • College of Agriculture Engineering Science, Baghdad University, Baghdad, Iraq
  • Ministry of Water Rescores, Baghdad, Iraq
Bibliografia
  • 1. Abu-Zeid, M.M., Baghdady, A.R., El-Etr, H.A. 2001. Textural attributes, mineralogy and provenance of sand dune fields in the greater Al Ain area, United Arab Emirates. Journal of Arid Environments, 48, 475–499.
  • 2. Alabadi, Luma, A.S., Essa, S.K. 2016. Effect of the Source of Sedimentation in the Mineralogical Composition of the Sand Fraction to Some Areas of the Southern Part of the Iraqi Alluvial Plain. Journal of Environment and Earth Science, 6(10), 145–160.
  • 3. Al-Ankaz, Zinah S., Muslim R.I., Al-Ghasham N.A.O., Jasim H.K. 2022. Mineral Composition and Provenance of Al- Chabbab Wasit, Southeastern Iraq. Iraqi Geological Journal, 55(2E), 230–242.
  • 4. Al-husseni, Ayad K.A., Alabadi, L.A.S., Khaeim, H.M., Al-Jutheri, H.W. 2021. Chemical and Mineralogical Nature of the Sediments of Sawa Lake in Muthanna Governorate, Southwestern Iraq. IOP Conf. Series: Earth and Environmental Science, 735(2021), 012054.
  • 5. Al-Juboury, A.I., AL-Miamary, F.A. 2009. Geochemical variations in heavy minerals as provenance indications: Application to the Tigris river sand, northern Iraq. Journal of Mediterranean Earth Sci., 1, 33–45.
  • 6. Al-Mallah, Inass, Al-Suhail, Q., Albadran, A. 2016. Mineralogical and Geochemical analysis of the sediments surrounding the Main Drain Area, Middle of Iraq. Iraqi Journal of Science, 57(3B), 2025–2042.
  • 7. Al-Mashhadani, Muna, M.N., Jasim, H.K. 2022. Mineralogy of Sand Dune Fields around Hor Al-Dalmaj Between Wasit and Al-Qadesiyah Governorates- Central Iraq. Iraqi Journal of Science, 63(8), 3478–3488.
  • 8. Al-Shamary, Mustafa, N., Tamar-Agha, M.Y. 2019. Mineralogy of Lower Diyala River Sediments North eastern Baghdad. Iraqi Journal of Science, 60(7), 1498–150.
  • 9. Arribas, J., Critelli, S., Le Pera, E., Tortosa, A. 2000. Composition of modem stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain). Sedimentary Geology, 133, 27–48.
  • 10. Benedetti, M.M., Raber, M.J., Smith, M.S., Leonard, L.A. 2006. Mineralogical indicators of alluvial sediment sources in the Cape Fear River basin, North Carolina. Physical Geography, 27, 258–281.
  • 11. Bowmans, R.M. 1994. Factors affecting sediment transport, deposition and erosion in intertidal weltands in Louisiana. Ph.D. Dissertation Faculty of the Louisand state University and Agricultural and Mechanical College.
  • 12. Carver, R.E. 1971. Procedures in Sedimentary Petrology: John Wiley and Sons, 653.
  • 13. Daham, Mariam, H., Abed, B.S. 2020. One and Tow- Dimensional Hydraulic Simulation of a Reach in Al-Gharraf River. Journal of Engineering, 26(7), 28–44.
  • 14. Daham, Mariam, H. 2021. A Prediction Formula for The Estimation of sediment Load in The Upper Reach of Al-Gharraf River. Journal of Engineering, 27(5), 63–74.
  • 15. Damiani, D., Giorgetti G. 2008. Provenance of glacialmarine sediments under the McMurdo/Ross Ice Shelf (Windless Bight, Antarctica): Heavy minerals and geochemical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 262–283.
  • 16. Eberl, D.D. 2004. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance. American Mineralogist, 89, 1784–1794.
  • 17. Fleet, W.F. 1926. Petrological Notes on the Red Sandstone of the West Midlands: Geol. Mag, 63, 505–516.
  • 18. Folk, R. 1974. Petrology of Sedimentary Rocks. Hamphill, Texas, 182.
  • 19. Gingele, F.X., De Deckker, P. 2005. Clay mineral, geochemical and Sr-Nd isotopic fingerprinting of sediments in the Murray-Darling fluvial system, southeast Australia. Australian Journal of Earth Sciences, 52, 965–974.
  • 20. Javanbakht, M., Beheshtipur, M.R., Farimani, S.R. 2022. Factors affecting average grain size changes in rivers of a catchment area (Ardak Catchment area, northeast Iran). Arabian J. of Geoscience, 15, 448–457.
  • 21. Lateef, Mahmood, A., Obaid, B.S., Jasm, J.S. 2020. Comparison of the Mineral Composition of Sand Fraction in Different Gypsum Soils from Tigris and Euphrates Deposits. Iraqi Journal of Soil Sciences, 20(1).
  • 22. Muller, L.D. 1997. Laboratory methods of mineral separation. IN Zussman, J., Ed., Physical methods in determination mineralogy, 2nd Edition, Academic press, London, 1–34.
  • 23. Salman, Layth, S., Essa, S.K. 2020. Spatial Variation of Content and Distribution Feldspar Minerals in AL-Gharraf River, Iraqi Journal of Soil Sciences, 20(1).
  • 24. Sousse, A. 1945. The Euphrates Valley and the Indian Dam Project, P:2, E:2, (Baghdad, Al-Maarif Press).
  • 25. Thonon, I., Middelkoop H., Van der perk M. 2007. The influence of floodplain morphology and river works on Spatial Patterns of overbank deposition. Netherlands J. of Geosciences, 86(1), 63–75.
  • 26. Tian, S., Li., Z., Wang, Z., Jiang, E. 2020. Mineral composition and partical size distribution of river sediment and loess in the middle and lower yellow river. International J. of Sediment Research, 36(3), 392–400.
  • 27. Tucker, M.E. 1988. Techniques in Sedimentology. Black Well. Oxford, 394.
  • 28. Zarraq, Ghazi, A. 2012. Studying the Pollution of Tigris River Sediments Between Al-Qayara-Balad. Iraqi Journal of Science, 53(4), 842–852.
  • 29. Zhang, Y., Huang Z., Chen C., He Y., Jiang T. 2015. Particle size distribution of river – suspended sediments determined by in stiu measured remote-sensing reflectance. Applied Optics, 54(20), 6367–6376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb01ea48-cf2b-40a6-a7df-846b3ac63059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.