PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Innovative triangular plate elements for enhanced plate bending analyses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of triangular elements satisfying either compatibility or incompatibility conditions in the plate bending analyses is of great importance. To achieve highly accurate responses, four elements are formulated for the structural analysis in this study. All of these elements have thirteen nodes with different degree-of-freedom arrangements. Two of them are displacement-based compatible triangular elements, which are named Karimi Pour Compatible Triangular (KCT) and Noroozinejad Compatible Triangular (NCT) elements. Besides, the other two stress-based incompatible triangular elements are also suggested with the names of Karimi Pour Incompatible Triangular (KIT) and Noroozinejad Incompatible Triangular (NIT) elements. In this study, several benchmark problems are solved by using four proposed elements. These structures were previously analyzed by analytical or numerical schemes. Findings clearly indicated the improvement of answers, when various behaviors of the plate bending structures were studied. Additionally, it is concluded that the solution time is considerably declined if the recommended stress-based elements are utilized.
Rocznik
Strony
139--166
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Innovative Structural Engineering and Mechanics Group, Texas, USA
  • Urban Transformations Research Centre (UTRC), Western Sydney University, NSW, Australia
Bibliografia
  • [1] K.Y. Sze and D. Zhu. A simple assumed strain method for enhancing the accuracy of the cubic triangular C0 plate bending element. Finite Elements in Analysis and Design, 29(1):21–33, 1998. doi: 10.1016/S0168-874X(97)00047-4.
  • [2] A. Karimi Pour and E. Noroozinejad Farsangi. Representing capabilities of novel semi-analytical triangular plate elements. The Journal of Strain Analysis for Engineering Design, 58(6):438– 454. doi: 10.1177/03093247221150043.
  • [3] A. Karimi Pour and E. Noroozinejad Farsangi. Airy stress function for proposed thermoelastic triangular elements. Journal of Engineering Mathematics, 138:11, 2023. doi: 10.1007/s10665-022-10256-1.
  • [4] M. Rezaiee-Pajand and A. Karimi Pour. Easy function for solving linear elasticity problem. Structural Engineering and Mechanics, 81(3):335–348, 2022. doi: 10.12989/sem.2022.81.3.335.
  • [5] M. Rezaiee-Pajand, A. Karimi Pour, and M. Attari. A precise splice length model for reinforced concrete structures. Proceedings of the Institution of Civil Engineers – Structures and Buildings, 175(5):373–386, 2022. doi: 10.1680/jstbu.19.00078.
  • [6] M. Rezaiee-Pajand and A. Karimi Pour. Analytical scheme for solid stress analysis. International Journal of Applied Mechanics, 12(6):2050071, 2020. doi: 10.1142/S1758825120500714.
  • [7] M. Rezaiee-Pajand and A. Karimi Pour. Two rectangular elements based on analytical functions. Advances in Computational Design, 5(2):147–157, 2022. doi: 10.12989/ACD.2020.5.2.14.
  • [8] M. Rezaiee-Pajand and A. Karimi Pour. Stress analysis by two cuboid isoparametric elements. European Journal of Computational Mechanics, 28(5):373–410, 2019. doi: 10.13052/ejcm2642-2085.2851.
  • [9] M. Rezaiee-Pajand and A. Karimi Pour. Three stress-based triangular elements. Engineering with Computers, 36(4):1325–1345, 2020. doi: 10.1007/s00366-019-00765-6.
  • [10] N.K. Öztorun. A rectangular finite element formulation. Finite Elements in Analysis and Design, 42(12):1031–1052, 2006. doi: 10.1016/j.finel.2006.03.004.
  • [11] I. Esen. A new finite element for transverse vibration of rectangular thin plates under a moving mass. Finite Elements in Analysis and Design, 66:26–35, 2013. doi: 10.1016/j.finel.2012.11.005.
  • [12] S. Haldar and A.H. Sheikh. Bending analysis of composite folded plates by finite element method. Finite Elements in Analysis and Design, 47(4):477–485, 2011. doi: 10.1016/j.finel. 2010.12.006.
  • [13] K.F. Wang and B.L. Wang. A finite element model for the bending and vibration of nanoscale plates with surface effect. Finite Elements in Analysis and Design, 74:22–29, 2013. doi: 10.1016/j.finel.2013.05.007.
  • [14] F.G. Flores and E. Oñate. Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element. Finite Elements in Analysis and Design, 47(9):982–990., 2011. doi: 10.1016/j.finel.2011.03.014.
  • [15] P. Franciosa, A. Palit, S. Gerbino, and D. Ceglarek. A novel hybrid shell element formulation (QUAD+ and TRIA+): A benchmarking and comparative study. Finite Elements in Analysis and Design, 166:103319, 2019. doi: 10.1016/j.finel.2019.103319.
  • [16] J.B. Duan, Y.J. Lei, and D.K. Li. Fracture analysis of linear viscoelastic materials using triangular enriched crack tip elements. Finite Elements in Analysis and Design, 47(10):1157–1168, 2011. doi: 10.1016/j.finel.2011.05.004.
  • [17] L. Mu and Y. Zhang. Cracking elements method with the 6-node triangular element. Finite Elements in Analysis and Design, 177:103421, 2020. doi: 10.1016/j.finel.2020.103421.
  • [18] X.Y. Zhuang, R.Q. Huang, H.H. Zhu, H. Askes, and K. Mathisen. A new and simple lockingfree triangular thick plate element using independent shear degrees of freedom. Finite Elements in Analysis and Design, 75:1–7, 2013. doi: 10.1016/j.finel.2013.06.005.
  • [19] X. Ma and W. Chen. Refined 18-DOF triangular hybrid stress element for couple stress theory. Finite Elements in Analysis and Design, 75:8–18, 2013. doi: 10.1016/j.finel.2013.06.006.
  • [20] J. Zhao, W. Chen, and B. Ji. A weak continuity condition of FEM for axisymmetric couple stress theory and an 18-DOF triangular axisymmetric element. Finite Elements in Analysis and Design, 46(8):632–644, 2010. doi: 10.1016/j.finel.2010.03.003.
  • [21] A. Kaveh and M. Daei. Efficient force method for the analysis of finite element models comprising of triangular elements using ant colony optimization. Finite Elements in Analysis and Design, 45(10):710–720, 2009. doi: 10.1016/j.finel.2009.06.005.
  • [22] W. Hu, C.T. Wu, and M. Koishi. A displacement-based non-linear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation anal-ysis of elastomers. Finite Elements in Analysis and Design, 50:161–172, 2012. doi: 10.1016/ j.finel.2011.09.007.
  • [23] G.H. Liu, Q.H. Zhang, and K.Y. Sze. Spherical-wave based triangular finite element models for axial symmetric Helmholtz problems. Finite Elements in Analysis and Design, 47(4):342–350, 2011. doi: 10.1016/j.finel.2010.12.002.
  • [24] M. Huang, Z. Zhao, and C. Shen. An effective planar triangular element with drilling rotation. Finite Elements in Analysis and Design, 46(11):1031–1036, 2010. doi: 10.1016/j.finel. 2010.07.019.
  • [25] A. Kaveh and K. Koohestani. Efficient finite element analysis by graph-theoretical force method; triangular and rectangular plate bending elements. Finite Elements in Analysis and Design, 44(9–10):646–654, 2008. doi: 10.1016/j.finel.2008.03.001.
  • [26] J. Chen and C.J. Li. A 3D triangular prism spline element using B-net method. European Journal of Mechanics – A/Solids, 75:485–496, 2019. doi: 10.1016/j.euromechsol.2019.02.014.
  • [27] X. Cui, S.Y. Duan, S.H. Huo, and G.R. Liu. A high order cell-based smoothed finite element method using triangular and quadrilateral elements. Engineering Analysis with Boundary Elements, 128:133–148, 2021. doi: 10.1016/j.enganabound.2021.03.025.
  • [28] N. Zander,H. Bériot, C. Hoff, P. Kodl, and L. Demkowicz. Anisotropic multi-level hp-refinement for quadrilateral and triangular meshes. Finite Elements in Analysis and Design, 203:103700, 2022. doi: 10.1016/j.finel.2021.103700.
  • [29] M. Kamiński. Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based Finite Element Method. Finite Elements in Analysis and Design, 200:103648, 2022. doi: 10.1016/j.finel.2021.103648.
  • [30] J.R. Cho. Non-linear bending analysis of FG-CNTRC plate resting on the elastic foundation by natural element method. Engineering Analysis with Boundary Elements, 141:65–74, 2022. doi: 10.1016/j.enganabound.2022.05.008.
  • [31] J.P.M. de Almeida, E.A.W. Maunder, and C. Tiago. A general degree semi-hybrid triangular compatible finite element formulation for Kirchhoff plates. International Journal of Numerical Methods in Engineering, 120(1):56–85, 2019. doi: 10.1002/nme.6124.
  • [32] C. Bourdarias, S Gerbi, and J. Ohayon. A three-dimensional finite element method for biological active soft. ESAIM: Mathematical Modelling and Numerical Analysis, 37(4):725–739, 2003. doi: 10.1051/m2an:2003044.
  • [33] N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42(2): 75–487, 1994. doi: 10.1016/0956-7151(94)90502 -9.
  • [34] X.R. Fu, S. Cen, C.F. Li, and X.M. Chen. Analytical trial function method for the development of new 8-node plane element based on the variational principle containing Airy stress function. Engineering Computations, 27(4):442–463, 2010. doi: 10.1108/02644401011044568.
  • [35] O.C. Zienkiewicz, R.L. Taylor, P. Papadopoulos, and E. Onate. Plate bending elements with discrete constraints: new triangular elements. Computers & Structures, 35(4):505–522, 1990. doi: 10.1016/0045-7949(90)90072-A.
  • [36] Y. Shang, S. Cen, and W. Ouyan. New hybrid-Trefftz Mindlin-Reissner plate elements for efficiently modeling the edge zones near free/SS1 edges. Engineering Computations, 35(1):136– 156, 2018. doi: 10.1108/EC-04-2017-0123.
  • [37] K.Y. Sze and Z.H. Wu. Twenty-four-DOF four-node quadrilateral elements for gradient elasticity. International Journal for Numerical Methods in Engineering, 119(2):128–149, 2019. doi: 10.1002/nme.6044.
  • [38] P. Fischer, J. Mergheim, and P. Steinmann. On the 𝐶1 continuous discretization of non-linear gradient elasticity: A comparison of NEM and FEM based on Bernstein–Bezier patches. International Journal for Numerical Methods in Engineering, 82(8):1282–1307, 2010. doi: 10.1002/nme.2802.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fb018374-0e59-4e62-989b-d7a5aeb5cdd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.