Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a comprehensive overview of the problem of sinkholes in mining and post-mining areas. It analyzes the key causes and mechanisms behind sinkhole formation, taking into account both natural factors and those resulting from human activity. Special attention is given to modeling methods and risk forecasting of sinkhole occurrence, based on a review of current scientific literature and the latest technological advancements, including advanced analytical techniques, numerical modeling and machine learning methods. The aim of this study is to expand both theoretical and practical understanding of sinkhole processes and to support the development of effective risk management strategies in regions affected by intensive mining activities.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
293--312
Opis fizyczny
Bibliogr. 61 poz., rys., wykr.
Twórcy
autor
- Strata Mechanics Research Institute Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
autor
- AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] A.K. Abd El Aal, B.S. Nabawy, A. Aqeel, A. Abidi, Geohazards assessment of the karstified limestone cliffs for safe urban constructions, Sohag, West Nile Valley, Egypt. Journal of African Earth Sciences 161, 103671 (2020).DOI: https://doi.org/10.1016/j.jafrearsci.2019.103671.
- [2] E. Intrieri, G. Gigli, M. Nocentini, L. Lombardi, F. Mugnai, F. Fidolini, N. Casagli, Sinkhole monitoring andearly warning: An experimental and successful GB-InSAR application. Geomorphology 241, 304-314, (2015).DOI: https://doi.org/10.1016/j.geomorph.2015.04.018.
- [3] J .-W. Kim, Z. Lu, J. Kaufmann, Evolution of sinkholes over Wink, Texas, observed by high-resolution optical and SAR imagery. Remote Sensing of Environment 222, 119-132 (2019).DOI: https://doi.org/10.1016/j.rse.2018.12.028.
- [4] K. Konieczny, L. Słowik, An Example of Failure of an Office Building in Upper Silesia. MAT EC Web Conf 284,3003 (2019). DOI: https://doi.org/10.1051/matecconf/201928403003.
- [5] A . Kotyrba, Ł. Kortas, Sinkhole hazard assessment in the area of abandoned mining shaft basing on microgravity survey and modelling – Case study from the Upper Silesia Coal Basin in Poland, Journal of Applied Geophysics 130, 62-70 (2016). DOI: https://doi.org/10.1016/j.jappgeo.2016.04.007.
- [6] A.A. Malinowska, A. Guzy, R. Hejmanowski, P. Ulmaniec, Hybrid-approach for sinkhole occurrence risk mitigationin urban areas. IOP Conf. Ser.: Earth Environ. Sci. 291, 12022 (2019).DOI: https://doi.org/10.1088/1755-1315/291/1/012022.
- [7] A.A Malinowska, A. Matonóg, Sinkhole hazard maping with the use of Spatial analysis and analitycal hierarchy process in the light of mining-geological factors. Acta Geodynamica et Geomaterialia 14, 2 (186), 159-172 (2016).DOI: https://doi.org/10.13168/AGG.2016.0037.
- [8] R . Ścigała, K. Szafulera, M. Jendryś, Assessment of sinkhole hazard in the post-mining area using the ERT method and numerical modeling. 75 Scientific Journals of the Maritime University of Szczecin 147, 20-34 (2023).DOI: https://doi.org/10.17402/570.
- [9] P. Sahu, R.D. Lokhande, An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth and Planetary Science 11, 63-75 (2015).DOI: https://doi.org/10.1016/j.proeps.2015.06.009.
- [10] B.-A. Sainsbury, D. Sainsbury, D. Carroll, Back-analysis of PC1 cave propagation and subsidence behaviour at the Cadia East mine. Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Australian Centre for Geomechanics, 167-78 (2018) DOI: https://doi.org/10.36487/ACG_rep/1815_10_Sainsbury.
- [11] T. Sasaoka, H. Takamoto, H. Shimada, J. Oya, A. Hamanaka, K. Matsui, Surface subsidence due to underground mining operation under weak geological condition in Indonesia. Journal of Rock Mechanics and Geotechnical Engineering 7, 337-344 (2015). DOI: https://doi.org/10.1016/j.jrmge.2015.01.007.
- [12] A. Scotto Di Santolo, G. Forte, A. Santo, Ana lysis of sinkhole triggering mechanisms in the hinterland of Naples (southern Italy). Engineering Geology 237, 42-52 (2018).DOI: https://doi.org/10.1016/j.enggeo.2018.02.014.
- [13] X. Chen, Y. Hu, L. Zhang, Y. Liu, 3D large-deformation modelling on face instability and sinkhole formation during tunnelling through non-uniform soils. Tunnelling and Underground Space Technology 134, 105011 (2023).DOI: https://doi.org/10.1016/j.tust.2023.105011.
- [14] Y. Hou, Q. Fang, D. Zhang, L.N.Y. Wong, Excavation failure due to pipeline damage during shallow tunnellingin soft ground. Tunnelling and Underground Space Technology 46, 76-84 (2015).D OI: https://doi.org/10.1016/j.tust.2014.11.004.
- [15] K. Zhang, W. Zheng, Z. Liao, H. Xie, C. Zhou, S. Chen, J. Zhu, Risk assessment of ground collapse along tunnelsin karst terrain by using an improved extension evaluation method. Tunnelling and Underground Space Technology 129, 104669 (2022). DOI: https://doi.org/10.1016/j.tust.2022.104669.
- [16] Y. Zhang, Y.-Y. Jiao, L.-L. He, F. Tan, H.-M. Zhu, H.-L. Wei, Q.-B Zhang, Susceptibility mapping and risk assessment of urban sinkholes based on grey system theory. Tunnelling and Underground Space Technology 152,105893 (2024). DOI: https://doi.org/10.1016/j.tust.2024.105893.
- [17] H. Ali, J. Choi, Risk Prediction of Sinkhole Occurrence for Different Subsurface Soil Profiles due to Leakage from Underground Sewer and Water Pipelines. Sustainability 12, 310 (2019).DOI: https://doi.org/10.3390/su12010310.
- [18] M. Dave, A. Juneja, Erosion of soil around damaged buried water pipes – a critical review. Arab. J. Geosci. 16,317 (2023). DOI: https://doi.org/10.1007/s12517-023-11391-4.
- [19] P.M. Guarino, A. Santo, G. Forte, M. De Falco, D.M.A. Niceforo, Analysis of a database for anthropogenic sinkhole triggering and zonation in the Naples hinterland (Southern Italy). Nat Hazards 91, 173-192 (2017).DOI: https://doi.org/10.1007/s11069-017-3054-5.
- [20] F. Sarı, Sinkhole susceptibility analysis for karapinar/konya via multi criteria decision. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-4/W4, 339-343 (2017).DOI: https://doi.org/10.5194/isprs-annals-IV-4-W4-339-2017.
- [21] E. Intrieri, P. Confuorto, S. Bianchini, C. Rivolta, D. Leva, S. Gregolon, V. Buchignani, R. Fanti, Sinkhole risk mapping and early warning: the case of Camaiore (Italy). Front Earth Sci. 11, 1172727 (2023).D OI: https://doi.org/10.3389/feart.2023.1172727.
- [22] R .N. Nof, M. Abelson, E. Raz, Y. Magen, S. Atzori, S. Salvi, G. Baer, SAR Interferometry for Sinkhole Early Warning and Susceptibility Assessment along the Dead Sea. Israel. Remote Sensing 11, 1, 89 (2019).D OI: https://doi.org/10.3390/rs11010089.
- [23] E. Mikuła, Tworzenie się deformacji zapadliskowych w luźnym nadkładzie jako przypowierzchniowej warstwie górotworu, Ochrona Terenów Górniczych 79/1, 17–24 (1987).
- [24] M. Chudek, J. Arkuszewski, W. Olaszowski, Deformacje nieciągłe w obszarach górniczych, Z. 101 = Nr 610,Wydawnictwo Politechniki Śląskiej, 1980, Gliwice.
- [25] S.R. Hunt, Surface Subsidence due to Coal Mining in Illinois. PhD Thesis, University of Illinois at Urbana-Champaign, 1980.
- [26] K.B. Singh, B.B. Dhar, Sinkhole subsidence due to mining. Geotechnical and Geological Engineering 15, 327-341(1997). DOI: https://doi.org/10.1007/BF00880712.
- [27] G .M. Matheson, A.D. Eckert-Clift, Characteristics of chimney subsidence and sinkhole development from abandoned underground coal mines along the Colorado Front Range. Proceedings of the 2nd Workshop on SurfaceSubsidence Due to Underground Mining, West Virginia University, Morgantown, 204-214, 1986.
- [28] I . Statham, G. Treharne, Subsidence due to abandoned mining in the South Wales Coalfield, U.K.: Causes, mechanisms and environmental risk assessment. Proceeding of the Fourth International Symposium on Land Subsidence, Houston, Texas 200, 143-152, 1991.
- [29] A. Bierbaumer, Die Dimensionierung des Tunnelmauerwerkes: Studien, Leipzig, Deutschland, Wilhelm Engelmann,1923.
- [30] K. Tajduś, Determination of the Value of the Strain parameters for Strata Rock Mass in the Region of Underground Mining Influence. VGE Verlag GmbH 2 (2009).
- [31] A . Tajduś, K. Tajduś, M. Cała, Geomechanika w budownictwie podziemnym. Projektowanie i budowa tuneli. Wydawnictwo AGH, Kraków. 2012.
- [32] J . Sachs, B. Skinderowicz, R. Zakolski, Prognozowanie rodzaju i wielkości deformacji nieciągłych powierzchni na terenach płytkiej eksploatacji górniczej. Mat. Konf. Nauk.-Techn. pt.: Wybrane zagadnienia budownictwa na terenach górniczych, Katowice-Jaszowiec, 1974.
- [33] W. Janusz, A. Jarosz, Nieciągłe deformacje powierzchni terenu wywołane płytką podziemną eksploatacją górniczą. Mat. Konf. Nauk.-Techn. pt.: Budownictwo na terenach o dużych deformacjach, Katowice, 1976.
- [34] T. Staroń, Eksploatacja pokładów węgla z zawałem stropu w sąsiedztwie pól pożarowych. W. Śląsk, Katowice,(1979).
- [35] J. Sachs, Metoda prognozowania nieciągłych deformacji powierzchni ziemi na terenach górniczych. Konferencja Naukowo Techniczna na temat „Problemy budownictwa na terenach zapadliskowych”, Częstochowa, 1978.
- [36] J. Sachs, Prognozowanie powstawania zapadliska powierzchni ziemi na podstawie informacji wynikających z rozeznania geologiczno-górniczego badanego terenu. Konferencja Naukowo Techniczna na temat „Problemy budownictwa na terenach zapadliskowych”, Częstochowa, 1978.
- [37] J. Fenk, Eine Theorie zur Entstehung von Tagesbrüchen über Hohlräumen im Lockergestein. Dissertation, unveröff, Bergakademie Freiberg, 1979.
- [38] A . Goszcz, Powstawanie zapadlisk i innych deformacji nieciągłych powierzchni na obszarach płytkiej eksploatacji górniczej. Mat. Konf. pt.: Szkoła Eksploatacji Podziemnej ‘96, Wyd. CPPGSMiE PAN, 119-137, 1996.
- [39] B.N. Whittaker, D.J. Reddish, Subsidence Occurrence, Prediction and Control, 56. Nottingham: ELSEVIER. 1989.
- [40] M. Clostermann, Einwirkungsrelevanz des Altbergbaus, Bemessung von Einwirkungs- und Gefährdungsbereichenund Einfluss von Grubenwasserstandsänderungen. Gutachterliche Stellungnahme, Projekt Nr.: 16-124, 2020.
- [41] K. Tajduś, A. Sroka, Analytic and numerical methods of sinkhole prognosis. Altbergbau Kolloquium Verlag Glückauf GmbH, Freiberg, 152-65 (2007).
- [42] A . Sroka, K. Tajduś. R. Misa, M. Clostermann, The possibility of discontinuity/sinkholes appearance with the determination of their geometry in the case of shallow drifts. Prognose von Tagesbrüchen Und Deren Geometrie Bei Tagesnahen Strecken 18 Altbergbau – Kolloquium, 173-86 (2018).
- [43] C .E. Augarde, A.V. Lyamin, S.W. Sloan, Prediction of Undrained Sinkhole Collapse. J. Geotech. Geoenviron. Eng,129, 197-205 (2003). DOI: https://doi.org/10.1061/(asce)1090-0241(2003)129:3(197).
- [44] J. Shiau, M.M. Hassan, Numerical modelling of three-dimensional sinkhole stability using finite different method. Innov Infrastruct Solut 6, 183 (2021). DOI: https://doi.org/10.1007/s41062-021-00559-0.
- [45] L.-H. Luu, G. Noury, Z. Benseghier, P. Philippe, Hydro-mechanical modeling of sinkhole occurrence processesin covered karst terrains during a flood. Eng. Geol. 260, 105249 (2019).DOI: https://doi.org/10.1016/j.enggeo.2019.105249.
- [46] A. Baric, B. Kovacevic Zelic, Numerical modelling of cover-collapse sinkholes caused by the earthquake – a case study. ISSMGE (2022). DOI: https://doi.org/10.53243/ICEG2023-263.
- [47] D. Al-Halbouni, E.P. Holohan, A. Taheri, M.P.J. Schöpfer, S. Emam, T. Dahm, Geomechanical modelling of sinkholed evelopment using distinct elements: model verification for a single void space and application to the Dead Sea area. Solid Earth 9, 1341-1373 (2018). DOI: https://doi.org/10.5194/se-9-1341-2018.
- [48] M.H. Soliman, A.L. Perez, B.H. Nam, M. Ye, Physical and Numerical Analysis on the Mechanical Behavior of Cover-collapse Sinkholes in Central Florida. Proceedings of the 15th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst and the 3rd Appalachian Karst Symposium, Shepherdstown, West Virginia: National Cave and Karst Research Institute, (2018).DOI: https://doi.org/10.5038/9780991000982.1040.
- [49] M. Caudron, F. Emeriault, R. Kastner, M. Al Heib, Numerical modeling of the soil structure interaction during sinkholes. Numerical methods in geotechnical engineering, Graz, Austria, 267-273 (2006).
- [50] J. Zhu, A.M. Nolte, N. Jacobs, M. Ye, Using machine learning to identify karst sinkholes from LiDAR-derived topographic depressions in the Bluegrass Region of Kentucky. Journal of Hydrology 588, 125049 (2020).DOI: https://doi.org/10.1016/j.jhydrol.2020.125049.
- [51] J. Zhu, W.P. Pierskalla, Applying a weighted random forests method to extract karst sinkholes from LiDAR data. Journal of Hydrology 533, 343–352 (2016). DOI: https://doi.org/10.1016/j.jhydrol.2015.12.012.
- [52] X. Miao, X. Qiu, S-S. Wu, J. Luo, D.R. Gouzie, H. Xie, Developing Efficient Procedures for Automated Sinkhole Extraction from Lidar DEMs. Photogramm Eng Remote Sensing 79, 545-554 (2013).DOI: https://doi.org/10.14358/PERS.79.6.545.
- [53] Y.J. Kim, B.H. Nam, Q. Zheng, An artificial neural network approach to sinkhole hazard assessment for East Central Florida. Proceedings Of The 16th Multidisciplinary Conference On Sinkholes And The Engineering And Environmental Impacts Of Karst, Puerto Rico: National Cave and Karst Research Institute, (2020).DOI: https://doi.org/10.5038/9781733375313.1031.
- [54] K. Taheri, H. Shahabi, K. Chapi, A. Shirzadi, F. Gutiérrez, K. Khosravi, Sinkhole susceptibility mapping: A comparison between Bayes‐based machine learning algorithms. Land. Degrad. Dev. 30, 730-745 (2019).DOI: https://doi.org/10.1002/ldr.3255.
- [55] S. Bianchini, P. Confuorto, E. Intrieri, P. Sbarra, D. Di Martire, D. Calcaterra, F. Fanti, Machine learning for sinkhole risk mapping in Guidonia-Bagni di Tivoli plain (Rome), Italy. Geocarto International 37, 16687-16715(2022). DOI: https://doi.org/10.1080/10106049.2022.2113455.
- [56] H.A. Nefeslioglu, B. Tavus, M. Er, G. Ertugrul, A. Ozdemir, A. Kaya, S. Kocaman, Integration of an In SAR and ANN for Sinkhole Susceptibility Mapping: A Case Study from Kirikkale-Delice (Turkey). ISPRS International Journal of Geo-Information 10, 119 (2021). DOI: https://doi.org/10.3390/ijgi10030119.
- [57] O. Alrabayah, D. Caus, R.A. Watson, H.Z. Schulten, T. Weigel, L. Rüpke, D. Al-Halbouni, Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea. Remote Sensing 16, 2264 (2024).DOI: https://doi.org/10.3390/rs16132264.
- [58] M.U. Rafique, J. Zhu, N. Jacobs, Automatic Segmentation of Sinkholes Using a Convolutional Neural Network, Earth and Space Science 9, 2 (2022). DOI: https://doi.org/10.1029/2021EA002195.
- [59] M-S. Kang, N. Kim, S.B. Im, J-J. Lee, Y-K. An, 3D GPR Image-based Uc Net for Enhancing Underground Cavity Detectability, Remote Sensing, 11, 2545 (2019). DOI: https://doi.org/10.3390/rs11212545.
- [60] E.J. Lee, S.Y. Shin, B.C. Ko, C. Chang, Early sinkhole detection using a drone-based thermal camera and image processing, Infrared Physics & Technology, 78, 223–232 (2016). DOI: https://doi.org/10.1016/j.infrared.2016.08.009.
- [61] H .N. Vu, C. Pham, N.M. Dung, S. Ro, Detecting and Tracking Sinkholes Using Multi-Level Convolutional Neural Networks and Data Association, IEEE Access, 8, 132625-132641 (2020).D OI: https://doi.org/10.1109/access.2020.3010885.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fafb329c-b985-4cbd-b734-ec51d1f38ffe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.