Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A differential gene expressional network determines the prominent genes under altered phenotypes. The traditional approach requires n(n − 2)/2 comparisons for n phenotypes. We present a direct method for determining a differentia network under multiple phenotypes. We explore the non-discrete nature of gene expression as a pattern in a fuzzy rough set. An edge between a pair of genes represents a positive region of a fuzzy similarity relationship upon a phenotypic change. We apply a weight-ranking formula and obtain a directed ranked network; we label this as a phenotype interwoven network. Those nodes with large in-degree connectivity bubble up as significant genes under respective phenotypic changes. We tested the method on six diseases and achieved good corroboration with the results of previous studies in the two-step approach. The subgraphs of the isolated genes achieved good significance upon validation through an information theoretic approach. The top-ranking genes determined in all of our case studies are in consonance with the findings of the respective wet-lab tests.
Wydawca
Czasopismo
Rocznik
Tom
Strony
247--276
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- Visva-Bharati University, Department of Computer and System Sciences, Santiniketan, West Bengal 731235, India
autor
- Visva-Bharati University, Department of Computer and System Sciences, Santiniketan, West Bengal 731235, India
autor
- Visva-Bharati University, Department of Computer and System Sciences, Santiniketan, West Bengal 731235, India
Bibliografia
- [1] Alladi S.M., Shinde Santosh P., Ravi V., Murthy U.S.: Colon cancer prediction with genetic profiles using intelligent techniques, Bioinformation, vol. 3(3), pp. 130–133, 2008.
- [2] Almlof J.C., Alexsson A., Imgenberg-Kreuz J., Sylwan L., Backlin C., Leonard D., Nordmark G., Tandre K., et al.: Novel risk genes for systemic lupus erythematosus predicted by random forest classification, Scientific Reports, vol. 7(1), pp. 1–11, 2017.
- [3] Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., Levine A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences, vol. 96(12), pp. 6745–6750, 1999.
- [4] Baer C., Nees M., Breit S., Selle B., Kulozik A.E., Schaefer K.L., Braun Y., Wai D., Poremba C.: Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma, International Journal of Cancer, vol. 110(5), pp. 687–694, 2004. doi: 10.1002/ijc.20171.
- [5] Bernusso V.A., Machado-Neto J.A., Pericole F.V., Vieira K.P., Duarte A.S., Traina F., Hansen M.D., Saad S.T.O., Barcellos K.S.: Imatinib restores VASP activity and its interaction with Zyxin in BCR–ABL leukemic cells, Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, vol. 1853(2), pp. 388–395, 2015.
- [6] Berry M.P.R., Berry M., Graham C.M., McNab F.W., Xu Z., Bloch S.A.A., Oni T., Wilkinson K.A., Banchereau R., Skinner J., Wilkinson R.J., Quinn C., Blankenship D., Dhawan R., Cush J.J., Mejias A., Ramilo O., Kon O.M., Pascual V., Banchereau J., Chaussabel D., O’Garra A., Bloch S.: An interferoninducible neutrophil-driven blood transcriptional signature in human tuberculosis, Nature, vol. 466(7309), pp. 973–977, 2010. doi: 10.1038/nature09247.
- [7] Bhattacharyya R.: Cohesion: A concept and framework for confident association discovery with potential application in microarray mining, Applied Soft Computing, vol. 11(1), pp. 592–604, 2011.
- [8] Bhattacharyya R.: Analyzing deviation pattern in strongly-correlated genes through core cluster mining, Information Sciences, vol. 251, pp. 47–62, 2013.
- [9] Bhattacharyya R., Bhattacharyya B.: Gene Expression Mining for Cohesive Pattern Discovery. In: M. Elloumi, J. K¨ung, M. Linial, R. Murphy, K. Schneider, C. Toma (eds.), Bioinformatics Research and Development, Communications in Computer and Information Science, vol. 13, pp. 221–234, Springer, Berlin–Heidelberg. doi: 10.1007/978-3-540-70600-7 17. 272 Arnab Sadhu, Balaram Bhattacharyya, Tathagato Mukhopadhyay
- [10] Bing P.F., Xia W., Wang L., Zhang Y.H., Lei S.F., Deng F.Y.: Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus, PLOS ONE, vol. 11(6), p. e0156234, 2016. doi: 10.1371/journal.pone.0156234.
- [11] Chatterjee P., Pal N.R.: Discovery of synergistic genetic network: A minimumspanning tree-based approach, Journal of Bioinformatics and Computational Biology, vol. 14(1), pp. 2–4, 2016. doi: 10.1142/S0219720016500037.
- [12] Chaturvedi A., Hoffman L.M., Jensen C.C., Lin Y.C., Grossmann A.H., Randall R.L., Lessnick S.L., Welm A.L., Beckerle M.C.: Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma, Molecular Biology of the Cell, vol. 25(18), pp. 2695–2709, 2014.
- [13] Chen D., Zhang L., Zhao S., Hu Q., Zhu P.: A novel algorithm for finding reducts with fuzzy rough sets, IEEE Transactions on Fuzzy Systems, vol. 20(2), pp. 385–389, 2012.
- [14] Chen Z., Liu G., Hossain A., Danilova I.G., Bolkov M.A., Liu G., Tuzankina I.A., Tan W.: A co-expression network for differentially expressed genes in bladder cancer and a risk score model for predicting survival, pp. 1–11, 2019.
- [15] Cho J.H., Lee D., Park J.H., Lee I.B.: New gene selection method for classification of cancer subtypes considering within-class variation, FEBS Letters, vol. 551(1–3), pp. 3–7, 2003.
- [16] Cho J.H., Lee D., Park J.H., Lee I.B.: Gene selection and classification from microarray data using kernel machine, FEBS Letters, vol. 571(1–3), pp. 93–98, 2004.
- [17] Deb S., Mahanta P., Bhattacharyya D.K., Dutta M.A.: Subspace module extraction from MI-based co-expression network, International Journal of Bioinformatics Research and Applications, vol. 14(3), pp. 207–234, 2018.
- [18] Dyczynski M., Vesterlund M., Bj¨orklund A.C., Zachariadis V., Janssen J., Gallart-Ayala H., Daskalaki E., et al.: Metabolic reprogramming of acute lymphoblastic leukemia cells in response to glucocorticoid treatment, Cell Death & Disease, vol. 9(9), p. 846, 2018.
- [19] El Akadi A., Amine A., El Ouardighi A., Aboutajdine D.: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper, Knowledge and Information Systems, vol. 26(3), pp. 487–500, 2011.
- [20] Fu L.M., Fu-Liu C.S.: Evaluation of gene importance in microarray data based upon probability of selection, BMC Bioinformatics, vol. 6(1), pp. 1–11, 2005.
- [21] Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, vol. 16(10), pp. 906–914, 2000.
- [22] Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, vol. 286(5439), pp. 531–537, 1999. Single-shot determination of differential gene network on multiple disease subtypes 273
- [23] Guyon I., Weston J., Barnhill S., Vapnik V.: Gene selection for cancer classification using support vector machines, Machine Learning, vol. 46(1–3), pp. 389–422, 2002.
- [24] Henson B.J., Bhattacharjee S., O’Dee D.M., Feingold E., Gollin S.M.: Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy, Genes, Chromosomes and Cancer, vol. 48(7), pp. 569–582, 2009.
- [25] Hill O., Cetin Y., Cieslak A., M¨agert H.J., Forssmann W.G.: A new human guanylate cyclase-activating peptide (GCAP-II, uroguanylin): precursor cDNA and colonic expression, Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, vol. 1253(2), pp. 146–149, 1995.
- [26] Hui A.B., Lenarduzzi M., Krushel T., Waldron L., Pintilie M., Shi W., PerezOrdonez B., et al.: Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas, Clinical Cancer Research, vol. 16(4), pp. 1129–1139, 2010.
- [27] Ishii T., Onda H., Tanigawa A., Ohshima S., Fujiwara H., Mima T., Katada Y., et al.: Isolation and Expression Profiling of Genes Upregulated in the Peripheral Blood Cells of Systemic Lupus Erythematosus Patients, DNA Research, vol. 12(6), pp. 429–439, 2005. doi: 10.1093/dnares/dsi020.
- [28] Jing L., Ng M.K., Zeng T.: Novel hybrid method for gene selection and cancer prediction, World Academy of Science, Engineering and Technology, vol. 62(89), pp. 482–489, 2010.
- [29] Khan J., Wei J.S., Ringn´er M., Saal L.H., Ladanyi M., Westermann F., Berthold F., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, vol. 7(6), pp. 673–679, 2001.
- [30] Landi M.T., Dracheva T., Rotunno M., Figueroa J.D., Liu H., Dasgupta A., Mann F.E., et al.: Gene Expression Signature of Cigarette Smoking and Its Role in Lung Adenocarcinoma Development and Survival, PLoS ONE, vol. 3(2), p. e1651, 2008. doi: 10.1371/journal.pone.0001651.
- [31] Leisching G., Wiid I., Baker B.: OAS1, 2, and 3: Significance During Active Tuberculosis?, The Journal of Infectious Diseases, vol. 217(10), pp. 1517–1521, 2018. doi: 10.1093/infdis/jiy084.
- [32] Li J., Zhou D., Qiu W., Shi Y., Yang J.J., Chen S., Wang Q., Pan H.: Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design, Scientific Reports, vol. 8(1), pp. 1–8, 2018. doi: 10.1038/s41598-017-18705-z.
- [33] Li Y., Campbell C., Tipping M.: Bayesian automatic relevance determination algorithms for classifying gene expression data, Bioinformatics, vol. 18(10), pp. 1332–1339, 2002.
- [34] Liang Y., Xie S.B., Wu C.H., Hu Y., Zhang Q., Li S., Fan Y.G., et al.: Coagulation cascade and complement system in systemic lupus erythematosus, Oncotarget, vol. 9(19), pp. 14862–14881, 2018. doi: 10.18632/oncotarget.23206. 274 Arnab Sadhu, Balaram Bhattacharyya, Tathagato Mukhopadhyay
- [35] Lin J.L.C., Geng X., Bhattacharya S.D., Yu J.R., Reiter R.S., Sastri B., Glazier K.D., et al.: Isolation and sequencing of a novel tropomyosin isoform preferentially associated with colon cancer, Gastroenterology, vol. 123(1), pp. 152–162, 2002.
- [36] Maertzdorf J., McEwen G., Weiner J., Tian S., Lader E., Schriek U., MayanjaKizza H., Ota M., Kenneth J., Kaufmann S.H.: Concise gene signature for point of care classification of tuberculosis, EMBO Molecular Medicine, vol. 8(2), pp. 86–95, 2016. doi: 10.15252/emmm.201505790.
- [37] Manikandan M., Rao A.K.D.M., Arunkumar G., Manickavasagam M., Rajkumar K.S., Rajaraman R., Munirajan A.K.: Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism, Molecular Cancer, vol. 15(1), p. 28, 2016.
- [38] Manzanillo P.S., Shiloh M.U., Portnoy D.A., Cox J.S.: Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages, Cell Host and Microbe, vol. 11(5), pp. 469–480, 2012. doi: 10.1016/j.chom.2012.03.007.
- [39] Marra L., Cantile M., Scognamiglio G., Perdon`a S., La Mantia E., Cerrone M., Gigantino V., et al.: Deregulation of HOX B13 expression in urinary bladder cancer progression, Current Medicinal Chemistry, vol. 20(6), pp. 833–839, 2013.
- [40] Ouderkirk J.L., Krendel M.: Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis, Cytoskeleton, vol. 71(8), pp. 447–463, 2014.
- [41] Pal N.R., Aguan K., Sharma A., Amari S.i.: Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering, BMC Bioinformatics, vol. 8(1), p. 5, 2007.
- [42] Peixoto A., Fernandes E., Gaiteiro C., Lima L., Azevedo R., Soares J., Cotton S., et al.: Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension, Oncotarget, vol. 7(39), pp. 63138–63157, 2016. doi: 10.18632/oncotarget.11257.
- [43] Perl A., Hanczko R., Lai Z.W., Oaks Z., Kelly R., Borsuk R., Asara J.M., Phillips P.E.: Comprehensive metabolome analyses reveal N-acetylcysteineresponsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin, Metabolomics, vol. 11(5), pp. 1157–1174, 2015. doi: 10.1007/s11306-015-0772-0.
- [44] Prasad G., Meissner S., Sheer D.G., Cooper H.L.: A cDNA encoding a muscletype tropomyosin cloned from a human epithelial cell line: identity with human fibroblast tropomyosin TM1, Biochemical and biophysical research communications, vol. 177(3), pp. 1068–1075, 1991.
- [45] Roy S., Bhattacharyya D.K., Kalita J.K.: Reconstruction of gene co-expression network from microarray data using local expression patterns, BMC Bioinformatics, vol. 15(7), pp. 1–14, 2014. Single-shot determination of differential gene network on multiple disease subtypes 275
- [46] Ruan J., Dean A.K., Zhang W.: A general co-expression network-based approach to gene expression analysis: comparison and applications, BMC Systems Biology, vol. 4(1), pp. 1–21, 2010.
- [47] Sadhu A., Bhattacharyya B.: Common Subcluster Mining in Microarray Data for Molecular Biomarker Discovery, Interdisciplinary Sciences: Computational Life Sciences, vol. 11(3), 2019. doi: 10.1007/s12539-017-0262-3.
- [48] Sambarey A., Devaprasad A., Mohan A., Ahmed A., Nayak S., Swaminathan S., et al.: Unbiased Identification of Blood-based Biomarkers for Pulmonary Tuberculosis by Modeling and Mining Molecular Interaction Networks, EBioMedicine, vol. 15, pp. 112–126, 2017. doi: 10.1016/j.ebiom.2016.12.009.
- [49] Sandberg Y., Kallemeijn M.J., Dik W.A., Tielemans D., Wolvers-Tettero I.L.M., van Gastel-Mol E.J., Szczepanski T., et al.: Lack of common TCRA and TCRB clonotypes in CD8+/TCRαβ+ T-cell large granular lymphocyte leukemia: a review on the role of antigenic selection in the immunopathogenesis of CD8+ T-LGL, Blood Cancer Journal, vol. 4(1), pp. e172–e172, 2014. doi: 10.1038/bcj.2013.70.
- [50] Shiah S.G., Hsiao J.R., Chang W.M., Chen Y.W., Jin Y.T., Wong T.Y., Huang J.S., et al.: Downregulated miR329 and miR410 promote the proliferation and invasion of oral squamous cell carcinoma by targeting Wnt-7b, Cancer Research, vol. 74(24), pp. 7560–7572, 2014. doi: 10.1158/0008-5472.CAN-14-0978.
- [51] Suzuki E., Amengual O., Atsumi T., Oku K., Hashimoto T., Kataoka H., Horita T., et al.: Increased expression of phospholipid scramblase 1 in monocytes from patients with systemic lupus erythematosus, The Journal of Rheumatology, vol. 37(8), pp. 1639–1645, 2010.
- [52] Tibshirani R., Hastie T., Narasimhan B., Chu G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences, vol. 99(10), pp. 6567–6572, 2002.
- [53] Wang K., Wei G., Liu D.: CD19: a biomarker for B cell development, lymphoma diagnosis and therapy, Experimental Hematology & Oncology, vol. 1(1), pp. 2–7, 2012.
- [54] Wu J., Gao F., Xu T., Deng X., Wang C., Yang X., Hu Z., et al.: miR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling, International Journal of Oncology, vol. 52(5), pp. 1427–1442, 2018.
- [55] Ye H., Wang X., Wang L., Chu X., Hu X., Sun L., Jiang M., et al.: Full high-throughput sequencing analysis of differences in expression profiles of long noncoding RNAs and their mechanisms of action in systemic lupus erythematosus, Arthritis Research & Therapy, vol. 21(1), pp. 1–17, 2019. doi: 10.1186/s13075-019-1853-7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fafb328c-0839-47b4-b2ad-2327d9319ca5