
Computer Science • 23(2) 2022 https://doi.org/10.7494/csci.2022.23.2.4339

Arnab Sadhu
Balaram Bhattacharyya
Tathagato Mukhopadhyay

SINGLE-SHOT DETERMINATION OF
DIFFERENTIAL GENE NETWORK
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Abstract A differential gene expressional network determines the prominent genes under

altered phenotypes. The traditional approach requires n(n− 2)/2 comparisons

for n phenotypes. We present a direct method for determining a differential

network under multiple phenotypes. We explore the non-discrete nature of

gene expression as a pattern in a fuzzy rough set. An edge between a pair

of genes represents a positive region of a fuzzy similarity relationship upon

a phenotypic change. We apply a weight-ranking formula and obtain a directed

ranked network; we label this as a phenotype interwoven network. Those nodes

with large in-degree connectivity bubble up as significant genes under respective

phenotypic changes. We tested the method on six diseases and achieved good

corroboration with the results of previous studies in the two-step approach.

The subgraphs of the isolated genes achieved good significance upon validation

through an information theoretic approach. The top-ranking genes determined

in all of our case studies are in consonance with the findings of the respective

wet-lab tests.
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1. Introduction

A cell is a fundamental functional and biological unit in all living organisms. Indi-

vidual organisms are characterized by their respective deoxyribonucleic acid (DNA)

sequences – the primary constituent of their cells. Genes are subsequences of DNA

that are distributed throughout each cell. Parts of the genes emulate to form m-RNA

through the process of transcription and ultimately produce sequences of amino acids

through translation – this results in proteins. The process by which the information

content of a gene is transformed into proteins is defined as gene expression. The

actual genetic encoding for an organism is termed its genotype, and the resulting

physical characteristics are known as its phenotype. For a cell to develop and function

properly, it must turn on the right gene at the right moment. Cellular diseases like

cancer are caused by malfunctions in cells that effect genetic and epigenetic changes.

These phenotypic changes occur from the abnormal expression of cancer-related genes

(such as oncogenes or tumor suppressor genes). The DNA microarray experiment is

an epoch-making technology that measures the expression profiles of several thousand

genes from a relatively small number of samples and, thus, makes it possible to ex-

plore the genetic causes of anomalies occurring in the functioning of the human body.

The samples are experimental cells under a specific phenotypic state.

Gene expression data opens up possibilities for looking for aberrations at the

molecular level and correlate a set of genes with phenotypic changes. A set of genes

is considered to have significant attributes if they exhibit expression patterns under

diseased samples that are distinct from those of normal samples [22]. These are called

molecular markers. These genes are of great importance in diagnosis as well as in the

medication perspective. First, the accurate classification of normal and contaminated

cells is important for disease diagnosis. For this reason, classifiers are built with

expression values of those genes as their attributes. Second, those genes are analyzed

for target-specific drug discovery and personalized medicines. Typically, the number

of samples is too small as compared to the number of genes in a gene expression

dataset. This often introduces ‘overfitting’ to such classifiers. Moreover, there are

often redundant as well as noisy attributes that introduce error in the classifiers.

Finding significant genes among many is, thus, a challenging task in view of the high

dimensionality of the source data.

Methods for isolating such pivotal genes can be broadly classified into two cat-

egories: differential expression analysis, and differential co-expression analysis. The

former [7, 8, 19, 47] finds individual genes that are deferentially expressed under an

altered phenotype, while the latter [14, 32] focuses on isolating a geneset through

building a co-regulation network. Genes are isolated from alterations in differential

networks. In the present work, we aim to achieve the same task through building

a single differential network that encompasses multiple phenotypic states.

A co-expression network of genes is an undirected graph where nodes correspond

to genes and edge-weight represents an index of the co-regulation of a corresponding

pair. Determining the index is crucial in a gene co-expression network. Key changes
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in an index under an altered phenotype condition indicate changes in regulation.

Phenotype-specific co-expression networks are formed across the normal and diseased

samples from which the genes are isolated by using the differential network. The

differentially co-expressed genes that are thus identified are able to distinguish dis-

eased samples from normal ones. Usually, the Pearson correlation coefficient (PCC)

is considered to be an index [46] that works poorly with the existence of a nonlin-

ear correlation. The expressions of genes are continuous in nature and rarely have

perfect linear relationships among them. The mutual information approach [17] does

not specifically assume the correlation pattern to be linear nor nonlinear, but the dis-

cretization of gene expression values might lead to a loss of crucial information [46].

We address these issues using a fuzzy rough set [13]. Moreover, all of the prevailing

methods involve the development of multiple phenotype-specific networks in order to

obtain the differential network. A geneset that is isolated for binary classification

might not always distinguish all of the phenotypic subsets. For example, a geneset

G1 that is able to correctly distinguish phenotype subset P1 from P2 may not be able

to isolate P1 from P3 (or vice-versa). A single network of genes across all phenotypes

would, thus, be a viable alternative.

We have constructed an object set of samples with genes as general attributes

and phenotypic states as decision attributes and model it as a fuzzy rough set that

incorporates continuous patterns of the expression of genes. We compute the edge-

weight index by employing a fuzzy equivalence relationship and its positive region

with respect to the decision attribute. We thus build a single interwoven network

that is comprised of gene-phenotype relationships – this eventually forms a weighted

clique. We convert it into a ranked network [45] in order to obtain an ordered set of

genes from their in-degree and call the ranked network that was built a phenotype

interwoven network (PINK ). A higher ranking implies a greater influence in disease

progression. PINK props up the genes that feature high cardinality in connection with

any phenotypic changes. The method explains the relationships among the genes by

a fuzzy equivalence relationship and, hence, can reflect both linear and nonlinear

interactions while implicitly encompassing the continuous nature of the expression

data. This paper makes the following salient contributions:

• The method builds a single network that finds differentially expressed genes under

multiple phenotypes.

• The method takes the inherent nonlinearity of the interactions into account.

• As we employ a fuzzy rough set into the method, quantizing the gene expression

data is not required – this makes it robust against noise.

• We report those novel marker genes that have substantial wet-lab support.

The rest of the paper is organized as follows. We brief the problem statement in

Section 2. In Section 3, we present the detailed method and algorithm; then, we

demonstrate the method on a real data excerpt in Section 4. In Section 5, we present

our results, analysis, comparisons, and discussion. We conclude this work in Section 6.
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2. Problem statement

We consider two genes (g1 and g2) that possess expression levels in multiple samples

(as can be seen in Table 1). The samples are either N (i.e., normal) or T (i.e.,

tumorous) phenotypes.

Table 1
Sample expression data

Samples

T1 T2 N1 N2 N3

g1 2 1 3 1 –2

g2 3 2 3 1 –1

Figures 1a and 1b represent their corresponding expression levels. It is appar-

ent that both genes failed to individually separate the two phenotypes with their

expression patterns.

a) b)

Figure 1. Expression pattern of g1 and g2 individually

In order to distinguish the phenotypes from the collective expression patterns of

the genes, we take the co-expression graph of the gene pair (Fig. 2). It is apparent

from Figure 2 that the phenotypes are separable through a single straight line; hence,

the discriminating power of the genes increase when taken collectively. This is due

to the differential co-expression pattern of the gene pair. This is the reason why we

consider a network of genes where the edges represent the collective behavior of a gene

pair. Gene pairs often possess a nonlinear correlation, which is better measured in

terms of information gain(IG). Let H(g) be the entropy of gene g and H(p) be the

entropy of the phenotype. We can find that the conditional entropies are H(p|g1) =
H(p|g2) = 0.40; however, the bi-variate conditional entropy is H(p|g1, g2) = 2.059

(hence, IG = 2.059 − 0.4 = 1.66). If the expression levels are displayed as fractions,

then they must be converted into integers to compute IG. This conversion causes
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a loss of crucial information, and we cannot isolate genes that have an actual high

discriminating power.

Figure 2. Co-expression patterns of g1 and g2

So, the existence of a nonlinear correlation and the non-discrete nature of the

expression data yield errors while computing the collective expressional changes in

a network of genes. We combat all of these issues by employing a fuzzy rough set.

The proposed method takes fractional real expression values as inputs without any

necessary conversions. It does not suffer in the presence of inherent non-linearity

either.

3. Method

Let A = {g1, g2, . . . , gm} be the set of genes, U = {S1, S2, . . . , Sn} be the set of

samples, and P = {P1, P2, . . . , Pt} be the set of phenotypes such that there exists

a surjective mapping U → P. We present the system in Figure 3.

We aim to evaluate the pairwise differential co-regulation of the genes across

the phenotypic changes. We emphasize finding the intra-phenotype similarity and

inter-phenotype dissimilarity among the genes by using a common index. We attempt

to compute the index from the expression values of the genes across sthe amples. Con-

sidering the samples to be tuples and the genes to be attributes, our task is to evaluate

the pair-wise relationships among the attributes across the tuples. As the expression

values are continuous, a fuzzy rough set (FRS) is appropriate for quantifying the

relationships in terms of the similarity measure between gene pairs.



252 Arnab Sadhu, Balaram Bhattacharyya, Tathagato Mukhopadhyay

g1s1
g2s1
g3s1

gms1

g1s2
g2s2
g3s2

gms2

g1s3
g2s3
g3s3

gms3

P1

g1sn
g2sn
g3sn

gmsn

..........................

..........................

..........................

..........................
..........................
..........................

.........

.........

.........

P2 Pt

Figure 3. Sample-phenotype mapping

In the framework of FRS, we define the samples as tuples, the gene pairs as con-

ditional attributes, and the sample phenotype as the decision attribute. We formulate

the gene interaction by using the fuzzy equivalence relationship. An equivalence rela-

tionship organizes the groups of tuples into disjoint classes that are equivalent under

the relationship. In the current scenario, we consider the pair to achieve a good fuzzy

similarity if the samples from different phenotypes can be grouped into equivalent

classes under the relationship between a pair of genes. Taking IR as a family of fuzzy

equivalence relationships that are associated with the set of conditional attribute C
over sample set S, we model the system in Figure 3 into FRS (as can be seen in

Figure 4).

FRS model

Input: Dataset Em×n, where m is number of genes and n is total number of samples

Procedure:

C = ({gα, gβ})∀α ∈ 1, 2, . . . ,m− 1;β = α+ 1, . . . ,m;

U = ({S1, S2, . . . , Sn}), A = ({g1, g2, . . . , gm})
P = (P1, P2, . . . , Pt);

Decision attribute D = P(Si)

I = (U,A)

Output: Fuzzy decision system FDS = (U, IR ∪D)

Figure 4. Modeling information system in FRS

With the transformed system in FRS, our task is to compute the pair-wise sim-

ilarity among the genes that are present in conditional attribute subset C. Let Ceq

be the set of equivalence classes that are generated under the relationship of subset

pair C. The set of equivalent classes that are based on D (U/D) are given by the

following equation:

(U/D) = ({Si|P(Si) = P1}, . . . , {Si|P(Si) = Pt}). (1)

Ceq may not necessarily match (U/D). We measure the goodness of the fuzzy sim-

ilarity by evaluating the positive region of the fuzzy similarity relationship with the



Single-shot determination of differential gene network on multiple disease subtypes 253

actual decision attribute (D). We denote sim(IR) as the fuzzy similarity relationship.

Either positive region (POSsim(IR)D) or the P-lower approximation is the union of

all of the equivalence classes in IR that are contained by the target set (U/D). The

lower approximation denotes the complete set of objects in U/D that can be classi-

fied without any ambiguity. We proceed with the computation of the fuzzy similarity

relationship and its positive region with the decision attribute.

3.1. Computation of fuzzy similarity relationship

For a pair of gα and gβ genes in C, we find their similarity relationship sim(IR) as

follows:

sim(IR) = ∩{R : R ∈ IR}, (2)

where Rα and Rβ correspond to gα, and the gβ in C is computed by using

Lukasiewicz’s t-norm (TL(x, y) = max(x+ y − 1, 0)):

Rk(Si, Sj) = 1− |Ck(Si)− Ck(Sj)|, (3)

where k ∈ {α, β}.

3.2. Computation of positive region

The positive region of sim(IR) with D is as follows:

POSsim(IR)D = ∪t
(λ=1)sim(IR)∗Dλ, (4)

where sim(IR)∗(Dλ)(S) is the fuzzy lower approximation of sim(IR), which we com-

pute by using

sim(IR)∗(Dλ)(Si) = ∩{neg(R)(Dλ)(Si)}. (5)

We compute fuzzy dissimilarity relationship neg(R)(Dλ) (that is, the negative

relationship) from the samples that are outside set Dλ as follows:

neg(R)(Dλ)(Si) = {1− sim(IR(i, j))|P(Si) = Dλ,P(Sj) ̸= Dλ}. (6)

3.3. Network formation

The network is comprised of undirected edges among all possible pairs of genes. The

weight of an edge (gα, gβ) is the fraction of the positive region of D in the universe

of the discourse (U). We compute the positive region of D over attribute set C by

using Eq. (4). Thus weight of the edge (gα, gβ) is as follows:

ω(α, β) = γ(C, D) =
|POS(sim(IR)D|

|U |
. (7)

This forms a weighted, undirected, and fully connected network of genes. We now

apply the rank-based method [46] on the network to obtain the phenotype interwoven
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network (PINK ). For each gene, the weights of the out-degree edges are sorted in

descending order. We retain only the top κ(user-defined) edges in the order of edge

weight ω as follows:

PINK(α, β) =

{
1, if gβ ∈ topκ(α),∀β ̸= α

0, otherwise
. (8)

Figure 5. Flowchart of algorithm

The out-degree of each node in PINK is κ, while the corresponding in-degree

can be up to m − 1. The in-degree of a gene indicates its order of impact in the

network. The steps that are followed for building PINK are illustrated via a flowchart

in Figure 5.

3.4. Algorithm

The pseudo code for the whole method is stated in Algorithm 1.
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Algorithm 1 Build PINK

1: function Build PINK (D) ▷ Dm×n is the dataset, m is the number of genes, and n is

the total number of samples

2: Rα[i, j] = 1− |D[α, i]− D[α, j]|∀(i, j) ≤ n, i ̸= j, α = 1, 2, . . . ,m;

3: for α = 1 to m− 1 do

4: for β = α+ 1 to m do

5: simIR = min(Rα,Rβ)

6: for λ = 1 to t do

7: POSsimIR+ = sim∗IR P(simIR,Pλ)

8: end for

9: ω(gα, gβ) = POSsimIR/|U |;
10: end for

11: end for

12: PINK = build ranked net(ω);

13: return(PINK );

14: end function

15: function find sim∗IR P(simIR,Pλ)

16: for i = 1 to |Pλ| do
17: for j = 1 to n do

18: negR[i, j] = 1− simIR;

19: end for

20: end for

21: P ′
λ = U \ Pλ;

22: for i = 1 to |Pλ| do
23: for j = 1 to |P ′

λ| do
24: tempR[i,j] = negR[i,j];

25: end for

26: end for

27: for i = 1 to |Pλ| do
28: sim∗R P [i] = min(tempR[i]);

29: end for

30: return(sim∗R Pλ);

31: end function

32: function form ranked net(ω)

33: for α = 1 to m− 1 do

34: sort ω(α, :) in decreasing order;

35: for β = α+ 1 to m do

36: if (gβ ∈ topκ(α)) then

37: ranked net(α, β) = 1;

38: else

39: ranked net(α, β) = 0;

40: end if

41: end for

42: end for

43: return(ranked net);

44: end function
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For m number of genes, the method finds an interwoven network of a size

of m×m. The computation of the fuzzy lower approximation has a complexity

of O(mn2) for n number of samples where n<<m. The ranked network formulation

possesses the complexity of O(m2 logmθ) where θ<<mn. Therefore, the total run

time is O(m3n2) ≊ O(m3). The total space complexity is O(m2), as PINK is only

a single square matrix of an order of m. The space requirement is independent of the

number of phenotypes. This shows the applicability of PINK in large datasets that

are comprised of multiple phenotypes.

4. Working of algorithm on real data excerpt

Here, we present a demonstration of building up a network from a subset of real data.

We take an excerpt from the GDS3257 lung cancer gene expression dataset [30]. The

excerpt contains the expression data of nine genes taken from four normal samples

and four cancerous samples (Tab. 2). The expression data is normalized to [0, 1].

The phenotype partitions are N = N1, N2, N3, N4 and C = C1, C2, C3, C4. Decision

attribute D ≡ {DN , DC |DN ∈ N,DC ∈ C}.

Table 2
Lung cancer data excerpt (N for normal, and C for cancerous)

Gene N1 N2 N3 N4 C1 C2 C3 C4

TOX3 0.23 0.25 0.19 0.18 0.64 0.68 0.78 0.81

SPP1 0.28 0.20 0.17 0.10 0.78 0.73 0.86 0.80

COL10A1 0.11 0.15 0.14 0.13 0.77 0.60 0.65 0.82

GREM1 0.13 0.16 0.13 0.13 0.19 0.28 0.31 0.67

JAM2 0.85 0.90 0.80 0.65 0.46 0.39 0.18 0.36

AGER 0.93 0.87 0.98 0.89 0.19 0.53 0.19 0.33

SFTPC 0.98 0.96 0.97 0.99 0.66 0.78 0.26 0.69

CRIP1 0.79 0.75 0.79 0.96 0.62 0.69 0.70 0.65

CEACAM6 0.65 0.68 0.78 0.44 0.97 0.93 0.90 0.92

Step 1: We proceed to compute Lukasiewicz’s similarity (R) using Equation 3 as

follows:

RTOX3(N1, N2) = 1− |TOX3(N1)− TOX3(N2)|
= 1− |0.23− 0.25| = 1− 0.02 = 0.98

RTOX3(N1, C1) = 1− |TOX3(N1)− TOX3(C1)|
= 1− |0.23− 0.64| = 1− 0.41 = 0.59.
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In the same manner, the similarity matrix RTOX3 for gene TOX3 and the RSPP1

for gene SPP1 are as follows:

RTOX3 =



1 0.98 0.96 0.95 0.59 0.55 0.45 0.42

1 0.94 0.93 0.61 0.57 0.48 0.44

1 0.99 0.55 0.51 0.41 0.38

1 0.54 0.50 0.41 0.37

1 0.96 0.86 0.83

1 0.90 0.87

1 0.96

1



RSPP1 =



1 0.92 0.89 0.82 0.50 0.55 0.42 0.47

1 0.97 0.90 0.42 0.48 0.34 0.40

1 0.93 0.40 0.45 0.31 0.37

1 0.32 0.37 0.24 0.30

1 0.94 0.92 0.98

1 0.87 0.92

1 0.94

1


.

Step 2: Then, we determine sim(IR) for the two genes from matrices RTOX3 and

RSPP1 by using the sim(IR) = ∩{R : R ∈ IR} formula:

sim(IR) =



1 0.92 0.89 0.80 0.50 0.55 0.42 0.42

1 0.94 0.90 0.42 0.48 0.34 0.40

1 0.93 0.40 0.45 0.31 0.37

1 0.32 0.37 0.24 0.30

1 0.94 0.86 0.83

1 0.87 0.87

1 0.94

1


.

Step 3: We compute fuzzy dissimilarity relationship neg(R)(DC) for C using Equa-

tion 6 followed by the fuzzy lower approximation sim∗(IR)DN) of sim(IR) for N and

sim(IR)(DC) for C using Equation 5:

sim(IR)(DN) = [0.45, 0.53, 0.56, 0.63]

sim(IR)(DC) = [0.50, 0.45, 0.58, 0.58].

Step 4: Finally, we compute the positive similarity region of D in sim(IR) using

Equation 4 and obtain the edge weight (ω(TOX3, SPP1)) between TOX3 and SPP1

using Equation 7.
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Similarly, we compute the edge weights among all gene pairs and obtain the

complete matrix ω:

ω =



0 4.28 4.2 3.62 3.79 4.2 3.79 3.62 3.66

0 4.57 4.24 4.33 4.58 4.34 4.22 4.22

0 0 4.11 4.20 4.35 4.31 4.11 4.13

0 2.82 3.79 2.47 1.59 2.11

0 4.06 3.03 2.83 3.30

0 3.81 3.79 3.92

0 2.29 2.66

0 1.65

0


.

From matrix ω, we get PINK in Figure 6 using Equation 8 by taking the top-three

outgoing edges (κ = 3):

Figure 6. PINK from lung cancer data excerpt

.

ω(α, β) signifies the goodness of the fuzzy similarity between gα and gβ under the

altered decision attribute. A higher ω(α, β) suggests that the set of equivalent classes

that is generated by the lower approximation of the fuzzy similarity relationship

between gα and gβ is more similar to the original class distribution. The top-ranked

genes thus have distinct patterns of behavior under the altered phenotypes. Hence,

the phenotypic status of the cell sample under observation can be determined by the

pattern of the top-ranked genes.
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The group of highly connected genes in PINK (Fig. 6) are COL10A1, SPP1, and

AGER. The hierarchical clustering on the heatmap (Fig. 7) of this group of genes is

the same as the sample pheno.

Figure 7. Heatmap of top-three connected genes

(note: expression values are normalized in [−3, 3] for better visualization)

5. Results and discussion

We conducted our experiment on the six expression datasets that are shown in Table 3.

Table 3
Dataset description

Dataset
Gene

count
Sample count

ALL-AML ([22]) 7128 ALL: 27; AML: 11

Colon Cancer ([3]) 2000 Cancer: 40; Normal: 22

OSCC ([50]) 858 Normal: 40; OSCC: 40

BLCA 43,148
Primary bladder cancer: 165

Normal tissue surrounding cancer: 58

SRBCT ([29]) 2308
Ewing family(EWS): 23; Burkitt lymphoma(BL): 8;

Neuroblastoma(NB): 12; Rhabdomyosarcoma(RMS): 21;

Test samples: 25

SLE ([6]) 49,576
Strep: 12; Straph: 40; Still: 31;

PSLE: 82; ASLE: 28; Control: 81

The top-ranking genes are isolated from PINK in each of the six case studies.

We present comparisons and corroborations with the findings of several previous com-

putational studies here, followed by their biological significance.
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5.1. Test of validation

To verify the correctness of the results from PINK, we conducted a set of experiments

on two benchmark datasets: ALL-AML, and colon cancer (as extensive works are

reported on these datasets in the literature).

ALL-AML is one of the most extensively studied and referred-to datasets in the

literature of gene expression mining [9, 22, 23, 28]. We present a list of the top-ten-

ranking genes in Table 4.

Table 4
Isolated genes from PINK along with citations of matching found in ALL-AML dataset

Top-ranking genes Reported in Wet-lab tests

ACADM [22,28] –

Zyxin [22,23,28] [5]

hdlc1 [22] –

GLUL – [18]

LYN-Vy1 [22,28] –

SFTPA1 – –

TCRA – [49]

MB-1 [28] –

RBP P48 [22] –

CD19 – [53]

For a quantitative analysis of the performance of PINK in selecting significant

genes, we conducted a voting-based classification that was similar to that which can be

found in [22]. We trained the classifier by employing the isolated genes as attributes

and recorded the prediction strength (PS) [22] of the selected features in both the

training and test datasets in Table 5.

Table 5
Performance of classifier in ALL-AML data

Number of

top-ranked

genes, k

Classifying accuracy

in training data

Classifying accuracy

in test data

Median

PS

#sample

<0.3 PS

Median

PS

#sample

<0.3 PS

20 0.89 0/38 0.72 4/34

30 0.9 0/38 0.74 4/34

40 0.9 0/38 0.73 3/34

50 0.89 0/38 0.66 4/34

60 0.88 1/38 0.67 4/34

80 0.86 1/38 0.64 4/34
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It is apparent from Table 5 that k = 40 produced an optimum result. Our

predictor with k = 50 outperformed the 50-gene predictor of Golub et al. During their

cross validation, Golub et al. left two training samples as uncertain (i.e., PS<0.3),

while our predictor assigned all of the 34 samples correctly with certainty. On the test

data, Golub et al. missed five samples (PS<0.3) as unclassified, while our predictor

left only three samples. Our method’s accuracy was also on par with two other highly

respected methods that were applied on this dataset; viz., Furey et al. [21] and Guyon

et al. [23]. In each case, the number of misclassified samples in the test data was above

three.

Four widely found genes in the previous studies [22, 23, 28] (namely, ACADM,

Zyxin, hdlc1, and LYN-v-y-1) placed in the top five of the PINK rankings. Among

the newly isolated genes, GLUL, TCRA, and CD19 were reported to be significant in

wet-lab tests [18,49,53].

For the colon cancer dataset, we list the top-ten-ranking genes that were isolated

by PINK in Table 6.

Table 6
List of genes isolated from PINK along with citations in colon cancer dataset

Top-ranking mRNA Reported in Wet-lab tests

Hsa.692 (CRP) – –

Hsa.627 (MONAP) [28] –

Hsa.8147 (Human desmin gene) [1, 28] –

Hsa.36689 (GCAP-II) [28] [25]

Hsa.11673 (GTP-BINDING NUCLEAR

PROTEIN RAN)
– –

Hsa.1832 (MYOSIN REGULATORY LIGHT

CHAIN 2)
[16, 20] –

Hsa.37937 (MYOSIN HEAVY CHAIN) [28] [40]

Hsa.1131 (TROPOMYOSIN) [16, 20] [44]

Hsa.1130 (Tropomyosin isoform) – [35]

Hsa.3306 (hnRNP) [1] –

We employed the top-ranking genes to build a classifier for the purpose of a perfor-

mance analysis. Following the validation procedures of Li et al. [33] and Cho et al. [16],

we studied the average performance over 100 random partitions into 50 training and

12 test samples. Table 7 shows the performance of the SVM classifier trained with

k top-ranked genes. Columns 3 and 4 explain that the misclassification in the test

data was lower as compared to the earlier reports. In contrast with Cho et al. [15],

the top-ranked genes also consistently participated in the building of the classifier

in the proposed method.
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Table 7
Performance of SVM classifier in colon cancer dataset

k

Classifying

accuracy in
Misclassification

in test data

Comparison

of

misclassification
training

data

test

data

7 0.88 0.85 1.8± 0.34 2.90± 0.13 [33]

10 0.88 0.83 2.04± 0.54 2.15± 1.2 [16]

15 0.95 0.85 1.8± 0.21 2.04± 0.14 [33]

30 0.98 0.81 2.28± 0.42 2.57± 1.76 [15]

We noticed the best performance with k = 15. Figure 8 illustrates a heatmap of

the top-15 genes; 57 out of 62 samples were correctly classified through hierarchical

clustering based on these 15 features.

Figure 8. Gene expression heatmap of top-15 genes isolated by PINK in colon cancer data –

two major sample clusters can be identified merely by visual inspection
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Out of the top-ten-ranking genes listed in Table 6, a total of six matched with

the previous studies [1, 16, 20, 28]. Four of the top-ranked genes coincided with the

wet-lab tests [25, 35, 40, 44] as well. The results of these well-explored datasets show

that, even though it was designed for network formation that encompasses multiple

phenotypes, the present method can isolate potential genes in a similar fashion to the

previous studies.

5.2. Comparison with differential network-based methods

We selected two datasets (OSCC [50] and BLCA [14]) for the purpose of corroborating

with the previous findings in the two-step approach of a differential co-expression

network. Oral squamous cell carcinoma (OSCC), the most common type of oral

cancer, causes damage to oral epithelial cells. It is the major cause of mortality in

those patients that suffer from head and neck cancers. We show a list of the top-ten-

ranking genes in PINK for the OSCC dataset in Table 8. The p-values of the isolated

genes are very significant in five-fold cross validation Li et al. [32] employed weighted

gene co-expression network analysis (WGCNA) on the same dataset and isolated two

sets of novel miRNA associated with OSCC. They reported the let-7c gene as a hub

that was ranked third by PINK. The same gene was also reported as differentially

expressed in [26] and as a tumor-suppressor molecule in [37]. The miR-410 molecule

was the second-most-connected component found by Li et al.; it was also reported

as differentially co-regulated by Shiah et al. [50]. We obtained the same molecule as

being ranked fourth (Tab. 8).

Table 8
Isolated genes from PINK along with citations of matching

found by WGCNA method and wet-lab tests in OSCC dataset

Genes isolated

by PINK
p-value Identified by WGCNA [32] Wet-lab tests

miR-21 9.53e− 23 – –

miR-30a 4.20e− 18 – –

miR-let-7c 8.08e− 22 ✓ [26, 37]

miR-410 1.55e− 14 ✓ –

miR-1267 1.50e− 16 ✓ –

miR-125b 1.08e− 12 – [24]

miR-503 1.54e− 20 – [54]

miR-7 3.04e− 19 – –

miR-99a 2.05e− 13 – –

miR-136 1.23e− 13 – –

Bladder urothelial carcinoma (BLCA) is one of the most common neoplasms

in urological systems. On the dataset of BLCA, we built PINK with 165 primary

bladder cancers and 58 surrounding normal tissue samples. Table 9 lists the top-ten
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connected genes. Chen et al. [14] employed the WGCNA model and identified seven

co-expressed modules that were related to urothelial bladder cancer (BLCA). Four

of the ten isolated genes in PINK were present in the modules that were identified

by the authors.
Table 9

Isolated genes from PINK along with citations of matching

found by WGCNA method and wet-lab tests in BLCA dataset

Genes isolated

by PINK
p-value Identified by WGCNA [14] Wet-lab tests

SLC12A8 6.84e− 15 ✓ –

RPL27A 1.35e− 11 – –

HOXB8 4.59e− 09 – [39]

DCN 6.44e− 10 ✓ –

SERPINE1 2.84e− 08 – [42]

ALDHIL1 3.42e− 09 – –

CLIP3 1.01e− 14 ✓ –

TPST1 1.51e− 14 ✓ –

SLC2A3 1.98e− 08 ✓ –

NPHS2 1.29e− 08 – –

From the findings of the OSCC and BLCA datasets, it is worth noting that two

independent techniques of studies (viz., WGCNA and PINK ) had distinctly separate

methodologies that corroborated each other.

5.3. PINK with datasets of multiple phenotypes

Finally, we apply PINK on the datasets of co-existent multiple phenotypes (i.e., t > 2)

to identify the set of genes that are able to conjugately isolate a subclass of the disease.

We selected two datasets (SRBCT and SLE), which were comprised of four and six

phenotypes, respectively.

5.3.1. SRBCT dataset

First, we put on a demonstration of how PINK achieves similar results to the differen-

tial network-based approach in much fewer straightforward steps. Usually, differential

networks can isolate genes to distinguish one pair of phenotypes at a time. The task

gets complicated as the number of phenotypes increases. On the SRBCT dataset, we

exhibited the process of building PINK for t > 2 by breaking it into (t − 1)-phases.

In the first phase, we built PINK(EWS+BL) and isolated the top-ranking genes (as

shown in the first column of Table 10). These genes can be used as an attribute vec-

tor for discriminating the EWS samples from the BL samples. We added NB and

RMS samples consecutively in Phases 2 and 3. The set of top-ranking genes for the

corresponding phases are displayed in Table 10.
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Table 10
Top-ranking genes through different phases in SRBCT dataset

Top-ranking genes in

PINK(EWS+BL) PINK(EWS+BL+NB) PINK(EWS+BL+NB+RMS)

CAV1 FGFR4 ∗ CITED4∗

FCGRT TLE2∗ MEST∗ ([52])

WAS HOXB7∗ MYL4∗ ([29,52])

PTPN13 DAPK1∗ FCGRT ([20,29,41,52])

DDR2 TNFAIP6∗ FVT1 ([20,29,41,52])

KIAA0467 PTPN13 PTPN13 ([29,52])

FVT1 FVT1 OLFM1∗ ([29, 41,52]

MAPK7 GYG2∗ TLE2 ( [29,52])

CTNNA1 GSTM5∗ FGFR4 ([20,29,41,52])

Note: ∗ indicates that gene is introduced as top-connected in specific phase and was absent

in earlier phase(s); citations in last column indicate substantiation of corresponding genes

The same task of isolating phenotype-specific feature attributes following a differ-

ential network-based approach would have required us to first build co-expression net-

works for all of the phenotypes individually. Then, differential networks are required

to be extracted for
(
4
2

)
possible pairs of phenotypes; viz., DNEWS\BL, DNEWS\NB ,

DNEWS\RMS , etc. These differential networks had to be compared to obtain the

second-order differential network (such as DNEWS\BL\NB , etc.). So, PINK defi-

nitely simplified the process.

The scatterplots (Fig. 9) explain the appearances of the genes in Table 10. For

instance, CAV1 was only up-regulated for the EWS samples (Fig. 9a); it is ranked

first in PINK(EWS+BL). Similarly, FGFR4 was specifically up-regulated in the NB

phenotypic samples (Fig. 9b), and CITED4 was only up-regulated in the RMS samples

(Fig. 9c). Eight of the top rankings were identified by at least one of the previous

methods [20,29,41,52] that were applied on this dataset.

We tested whether the top-connected genes could correctly classify the blind test

samples into the tumor subclasses. For this, we trained an artificial neural network

(ANN) that consisted of ten neurons in the hidden layer. We partitioned training

samples randomly into three groups by keeping 15% for testing, another 15% for

validation, and the remaining 70% for training the neural network. We used the

ANN classifier that was trained with the top-ten connected genes to classify 25 blind

test samples. By applying majority voting to categorize the samples, we were able

to diagnose 22 samples correctly with high confidence. This number was slightly

improved as compared to the 18 samples that were reported in the earlier work [29].
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Figure 9. Scatterplots of expression values of selected isolated genes in SRBCT dataset:

a) CAV1; b) FGFR4; c) CITED4; d) MEST; e) FCGRT

5.3.2. Dataset: SLE

The SLE dataset contained whole blood RNA from six different inflammatory and

infectious diseases. We applied the proposed method on this dataset to find specific

transcripts in order to discriminate these inflammatory and infectious diseases. We

built a single PINK that consisted of six phenotypes (t = 6). Table 11 lists the

top-connected genes.

Table 11
List of genes isolated from PINK in SLE dataset

Top-ranking genes p-value t-score Reported in Wet-lab tests

CSAD 3.22e− 36 –15.73 – [43]

OAS3 2.68e− 09 –6.25 [6] [31]

RSAD2 1.87e− 48 –20.06 – [38]

IFI44L 9.12e− 45 –19.99 [10] [48]

SPATS2L 2.02e− 45 –19.84 – –

OAS2 1.51e− 42 17.85 [6, 10] [31]

IFITM3 3.46e− 41 –17.70 [36,55] –

IFI27 1.15e− 30 –15.08 [10] [27]

SERPING1 5.33e− 41 –17.75 – [34]

PLSCR1 3.46e− 04 –3.65 – –
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To evaluate the statistical significance of the top-ranking genes, we performed a t-

test on them with a five-fold cross validation. As the main target phenotype of the

dataset was SLE, a one-vs.-all approach was executed by taking the ASLE and PSLE

samples as one class and the rest of the disease phenotypes as another. The p-values

and t-scores of the isolated genes were quite significant (as is shown in Table 11).

5.4. Test of validation of results

In this section, we compare the significance of our results with the state-of-the-art

methods. We first present a quantitative comparison, followed by an information

theoretic approach in order to find the information gain by the top-ranked genes that

are isolated by PINK.

5.4.1. Quantitative analysis

Our motivation was to isolate a set of genes that work as biomarkers for a corre-

sponding disease. Biomarkers are used to classify diseased and normal samples or the

different subtypes of a disease. In order to compare the accuracy of the classifier in

the aforementioned task, we trained a classifier with a gene set that was isolated by

PINK and did the same with the existing state-of-the-art methods. We compared

the accuracy with four different methods in total for four datasets where the lists

of the isolated genes by different methods were available. Neighborhood component

analysis (NCA) is a well-studied method for feature selection. WGCNA was par-

ticularly coined by Li et al. [32], and isolated markers are available for the BLCA

dataset.
Table 12

Performance evaluation of classifier trained with isolated genes

Dataset Method Ng Classifier Accuracy [%]

OSCC
NCA 12

Linear SVM
96.0

PINK 10 100.0

BLCA

NCA 10

Medium Gaussian SVM

74.0

WGCNA 14 76.7

PINK 10 88.8

SRBCT

PCA and ANN [29] 96
Naive Bayes 98.4

Medium Gaussian SVM 100.0

Shrunken centroids [52] 43
Naive Bayes 96.9

Medium Gaussian SVM 98.4

PINK 32
Naive Bayes 96.9

Medium Gaussian SVM 100.0

SLE

NCA 11

Medium Gaussian SVM

77.0

Random Forest [2] 17 69.0

Statistical ap-

proach [10]

10 66.8

PINK 10 85.0

Note: Ng is number of isolated genes employed as attributes in classifier;

principal component analysis is abbreviated “PCA”



268 Arnab Sadhu, Balaram Bhattacharyya, Tathagato Mukhopadhyay

Principal component analysis (PCA) and an artificial neural network-based

model (ANN) with 96 genes was used by Khan et al. [29] on the SRBCT dataset.

Successively shrunken centroids of the gene expression model were proposed by Tib-

shirani et al. [52] for the same dataset. The random forest algorithm and statistical

methods (fold change, the t-test p-value, and the false discovery rate p-value) were

applied on the SLE dataset by [2] and [10], respectively. We used five-fold cross val-

idation to evaluate the model’s performance. To avoid any bias, we employed the

same classifier while using different gene-selection methods on a single dataset. We

used the naive Bayes and support vector machine (SVM) methods with linear and

medium Gaussian kernels as classifiers. Table 12 displays the comparative results. It

is apparent from these results that PINK helped the classifiers attain the same level

of accuracy as its prevalent methods but with much smaller sets of biomarkers.

5.4.2. Information gain

We assess the validity of PINK by measuring the significance of its top-ranking genes

by using an information theoretic approach. The synergy value (S) [11] between a pair

of genes is the gain in the discriminating power between phenotypes when both are

considered jointly as compared to that of the individuals. We tested the significance

of isolated genes by their discriminating power. We built the complete graph G with

genes as nodes and 1/S as the corresponding edge weight. Subsequently, we found

the minimum spanning tree (MST) of G. As 1/S is assigned as the edge weight, the

MST represents the maximal total synergistic value. Let T be the weight of the MST.

We constructed a subgraph (G′) that consisted of the n top-ranking genes along with

their connectives ({n′|∃edge(n′ → n)}). The MST of G′ was extracted as well. Let

T ′ be the weight of this MST. We took ratio T ′

T as the significance (Ψ) of PINK. The

impact of the MST of PINK for all of the datasets is shown in Table 13. In all of the

datasets, Ψ was greater than 0.9 with n = 10. This implies that the subgraph that

was formed with only the top-ten-ranking genes in PINK contained most of the high-

synergy-value pairs and carried more than 90% of the knowledge that the complete

graph had.

Table 13
Significance of MST with top-ten-ranked genes of PINK

Dataset Ψ

ALL-AML 0.931

Colon cancer 0.916

BLCA 0.951

OSCC 0.943

SRBCT 0.947

SLE 0.938
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5.5. Biological significance of selected genes

In this section, we explore the biological significance of the isolated genes. Most of

the isolated genes have corroborations in wet-lab tests such as northern blot analysis,

qRT-PCR, etc. Tables 4–11 contain references to the corresponding wet-lab reports.

Some of the isolated genes are part of the significant biological pathways in the KEGG

pathway database (https://www.kegg.jp/kegg/pathway.html) as shown in Table 14.

Table 14
KEGG pathway report of isolated genes from PINK

Dataset Gene Relevant KEGG Pathways

ALL-

AML

GLUL Necroptosis

LYN-Vy1 B cell receptor signaling

RBP P48 Viral carcinogenesis

CD19 Hematopoietic cell lineage, B cell receptor signaling,

PI3K-Akt signaling, Epstein-Barr virus infection,

Primary immunodeficiency

OSCC

miR-30a Proteoglycans in cancer (map05205), MicroRNAs in

cancer (map05206)

miR-let-7c MicroRNAs in cancer (map05206)

miR-125b MicroRNAs in cancer (map05206)

miR-7 MicroRNAs in cancer (map05206)

BLCA SERPINE1 HIF-1 signaling pathway (map04066), Cellular

senescence (map04218)

SRBCT

PTPN13 Apoptosis (map04210)

MYL4 Apelin signaling pathway (map04371)

FGFR4 MAPK signaling pathway (map04010), Pathways in

cancer (map05200), Endocytosis (map04144)

CAV1 Focal adhesion (map04510), Endocytosis (map04144)

SLE

CSAD Taurine and hypotaurine metabolism (map00430),

Metabolic (map0110)

RSAD2 Hepatitis C (map05160), Influenza A (map05164)

SERPING1 Complement and coagulation cascades (map04610),

Pertussis (map05133)

Among the newly isolated genes in ALL-AML, GLUL has been found to play role

in removing NH+
4 by incorporating it into glutamine; this is integral to dex-induced

catabolism in B-ALL cells [18]. CD19 was reported to be a biomarker for B cell

development by Wang et al. [53].

In colon cancer, Myo1a (Hsa.37937) was reported to be a reason for increased

tumorigenicity [40]. Fibroblast TM1 (Hsa.1131) was reported as differentially ex-

pressed in [44]. Northern blot analysis showed that tropomyosin isoform (Hsa.1130)

was preferentially associated with colon cancer in [35].

In the case of OSCC, miR-125b was reported to cause malignancy in oral cells in

[24]. miR-503 was reported to be a suppressor gene in squamous cell carcinoma in [54].

https://www.kegg.jp/kegg/pathway.html


270 Arnab Sadhu, Balaram Bhattacharyya, Tathagato Mukhopadhyay

In BLCA, Hox genes were found to be associated with the development of bladder

cancer by Real Time-PCR [39]. SERPINE1 is a part of the HIF-1 signaling pathway.

This pathway has been found to enhance the malignant nature of bladder cancer

cells [42]; it also plays a role in tumor suppression, as it is a part of the cellular

senescence pathway.

In the case of SRBCT, the MEST gene that is ranked second was discovered

as potential marker that is specific for RMS by RT-PCR [4]. Figure 9d shows that

it is particularly up-regulated in RMS samples. In the same study [4], FCGRT was

reported to be target genes for EWS samples. Figure 9e shows that FCGRT is up-

regulated – particularly in EWS samples. PPTN13 is a part of the apoptosis pathway,

which is responsible for cell growth and death. FGFR4 is part of MAPK signaling

and cancer pathways. CAV1 is part of the focal adhesion pathway. This pathway

is reported to play an important role in Ewing sarcoma [12]. Figure 9a shows that

CAV1 is highly expressed in EWS samples.

In the case of SLE, [31] confirmed that the roles of OAS3 and OAS2 as mediators

in the innate immune response to infection may be important. The CSAD gene is

a part of the taurine and hypotaurine metabolism pathway. This is one of the most

affected pathways because of SLE [43]. IFITM3 was reported to be significantly up-

regulated in patients with SLE [55]. RT-PCR also found that transcription levels of

the IFI27 gene was significantly increased in SLE patients [27]. The SERPING1 gene

is part of the complement and coagulation cascades pathway. A study made on this

pathway discovered that it contributes to the severity of SLE [34]. PLSCR1 mRNA

was found to be significantly increased in SLE samples when compared to normal

ones [51].

6. Conclusion

In the mining of microarray data, the precise identification of genes that have dis-

criminating expression patterns across different classes is the most coveted task. This

helps in disease diagnosis and targets specific drug discovery. Studying the differential

network is a well-established approach for isolating the otherwise expressed genes as

they are related to a phenotype, but this requires the generation of separate networks

for the phenotypes under study and then comparing them.

In the present study, we propose a phenotype interwoven network (PINK )

method that accomplishes the task in a single network for multiple phenotypes,

thereby setting aside the cumbersome and tedious steps of comparing multiple net-

works. The method encompasses both linear and nonlinear correlations between gene

pairs; it also considers any inherent fuzziness in expression data and does not require

any sort of defuzzification. As a result, several of the new top-ranking genes reported

here have found place in prominent wet-lab tests, and a few have been corroborated

with previous works. Moreover, PINK unfolds the connectivity profiles of isolated

genes that might help in studying gene co-expression and co-regulation patterns under

phenotypic changes.
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